Spatial and temporal variability of hyporheic invertebrate community within a stream reach of the River Bača (W Slovenia)

Authors

  • Nataša Mori Department of Freshwater and Terrestrial Ecosystems Research, National Institute of Biology, Večna pot 111, SI-1001 Ljubljana
  • Anton Brancelj Department of Freshwater and Terrestrial Ecosystems Research, National Institute of Biology, Večna pot 111, SI-1001 Ljubljana

DOI:

https://doi.org/10.14720/ns.13.1.25-38

Keywords:

stream reach, hyporheic zone, invertebrates, distribution, community composition, spatial and temporal distribution

Abstract

We studied spatio-temporal distribution of hyporheic invertebrate community at the stream-reach scale in the River Bača on three sampling occasions (January, March, May) in 2005. On each sampling occasion, invertebrates were collected from the shallow hyporheic zone (RB1; depth 30-60 cm, 3 replicates), and deeper hyporheic zone (RB2; depth 60-90 cm, 2 replicates) in the river bed, and adjacent gravel bar (GB; depth 60-90 cm, 3 replicates) using Bou-Rouch piston pump. Concurrently, temperature, conductivity and oxygen were measured in the surface water and in hyporheic water at each sampling station. Differences in hyporheic community between dates and habitats were analysed by using two-way ANOVA (dates and habitats as fixed factors) and explored by principal component analysis (PCA). Altogether, 21,657 specimens from 63 taxa were collected. Cyclopoida juveniles, Leuctra sp. (Plecoptera), Chironomidae (Diptera), Acanthocyclops vernalis (Fischer, 1853) and Diacyclops languidus (G. O. Sars, 1863) were the most abundant in the samples. Two-way ANOVA showed significant differences between habitats (RB1 and GB), but no differences between dates when using taxonomic richness as dependent variable. No differences between habitats and dates were calculated when invertebrate densities were applied. PCA of hyporheic invertebrate data showed a gradient in community composition from shallow hyporheic zone (RB1) to deeper hyporheic zone (RB2) and gravel bar (GB). The differences were most probably due to different sediment composition in the studied habitats and less frequent disturbances due to floods in deeper layers and lateral gravel bars.

References

Angelier E. (1953): Recherches écologique et biogéographiques sur la faune des sables submergés. Archs. Zool. Exp. Gen 90: 37-161.

Bou C., Rouch R. (1967): Un nouveau champ de recherches sur la faune aquatique souterraine. C.R. Acad. Sci. Paris 265: 396-370.

Boulton A.J., Valett H.M., Fisher S.G. (1992): Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Arch. Hydrobiol. 125: 37-61. DOI: https://doi.org/10.1127/archiv-hydrobiol/125/1992/37

Boulton A.J., Findlay S., Marmonier P., Stanley E.H., Valett H.M. (1998): The functional significance of the hyporheic zone in streams and rivers. Ann. rev. ecolog. syst. 29: 59-81. DOI: https://doi.org/10.1146/annurev.ecolsys.29.1.59

Bretschko G. (1991): Bed sediments, groundwater and stream limnology. Verh. Int. Ver. Limnol. 24: 1957-1960. DOI: https://doi.org/10.1080/03680770.1989.11899106

Brunke M., Gonser T. (1997): The ecological significance of exchange processes between rivers and groundwater. Freshwat. Biol. 37: 1-33. DOI: https://doi.org/10.1046/j.1365-2427.1997.00143.x

Chappuis P.A. (1942): Eine neute Methode zur Untersuchung der Grundwasserfauna. Acta Sci. Math. Nat. Univ. Kolozsvar 6: 3-7.

Connell J.H. (1978): Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310. DOI: https://doi.org/10.1126/science.199.4335.1302

Creuzé des Chatelliers M. (1991): Geomorphological processes and discontinuities in the macrodistribution of the interstitial fauna. A working hypothesis. Int. Ver. Theor. Angew. Limnol. 24: 1607-1612. DOI: https://doi.org/10.1080/03680770.1989.11899030

Datry T., Larned S.T., Scarsbrook M.R. (2007): Responses of hyporheic invertebrate assemblages to large-scale variation in flow permanence and surface-subsurface exchange. Freshwat. Biol. 52: 1452-1462. DOI: https://doi.org/10.1111/j.1365-2427.2007.01775.x

Dole-Olivier M.-J. (1998): Surface water–groundwater exchanges in three dimensions on a backwater of the Rhône River. Freshwat. Biol. 40: 93-109. DOI: https://doi.org/10.1046/j.1365-2427.1998.00335.x

Dole-Olivier M.J., Castellarini F., Coineau N., Galassi D.M.P., Martin P., Mori N., Valdecasas A., Gibert J. (2009): Towards an optimal sampling strategy to assess groundwater biodiversity: comparison across six European regions. Freshwat. Biol. 54: 777-796. DOI: https://doi.org/10.1111/j.1365-2427.2008.02133.x

Einsle U. (1993): Crustacea: Copepoda: Calanoida und Cyclopoida. Gustav Fischer Verlag, Stuttgart, 208 pp.

Environment Agency RS (2007): Izvajanje monitoringa za ekološko stanje vodotokov v letu 2007. Bentoški nevretenčarji v vodotokih. http://www.arso.gov.si/vode/podatki/bn_2007.pdf, Environmental Agency RS: 109.

Fowler J., Death R.G. (2001): The effect of environmental stability on hyporheic community structure. Hydrobiol. 445: 85-95. DOI: https://doi.org/10.1023/A:1017507404733

Geist D.R., Dauble D.D. (1998): Redd site selection and spawning habitat use by fall chinook salmon: the importance of geomorphic features in large rivers. Environ. manage. (N.Y.) 22: 655-669. DOI: https://doi.org/10.1007/s002679900137

Gibert J., Danielopol D.L., Stanford J.A. (1994): Groundwater Ecology. Academic Press, New York, 570 pp.

Graf W., Waringer J. (1997): Atlas der Osterreichischen Kocherfliegen larven. Facultas Universitetverlag, Wien, 286 pp.

Hunt G.W., Stanley E.H. (2003): Environmental factors influencing the composition and distribution of the hyporheic fauna in Oklahoma streams: variation across ecoregions. Arch. Hydrobiol. 158: 1-23. DOI: https://doi.org/10.1127/0003-9136/2003/0158-0001

Janetzky W., Enderle R., Noodt W. (1996): Crustacea: Copepoda: Gelyelloida und Harpacticoida. Gustav Fischer Verlag, Stuttgart, 288 pp.

Karaman S.T. (1935): Die fauna der unterirdischen Dewässer Jugoslawiens. Verh. Int . Ver. Limnol. 7: 46-73. DOI: https://doi.org/10.1080/03680770.1935.11902405

Mackay R.J. (1992): Colonisation by lotic macroinvertebrates: review of processes and patterns. Can. j. fish aquat. Sci. 49: 617-628. DOI: https://doi.org/10.1139/f92-071

Malard F., Galassi D., Lafont M., Dolédec S., Ward J.W. (2003): Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. Freshwat. Biol. 48: 1709-1725. DOI: https://doi.org/10.1046/j.1365-2427.2003.01118.x

Meisch C. (2000): Crustacea: Ostracoda Spektrum Akademischer Verlag, Heildelberg, 522 pp.

Meštrov M. (1960): Faunističko-ekološka i biocenološka istraživanja podzemnih voda savske nizine. Biol. Glas. 13: 73-108.

Meštrov M., Stilinović B., Habdija I., Lattinger R., Maloseja Ž., Kerovec M., Čičin-Šain L. (1983): Ekološka svojstva intersticijskih podzemnih voda u odnosu na vodu reke Save. Act. Biol. 48: 5-33.

Mori N. (2004): Interstitial communities of Harpacticoida (Crustacea, Copepoda) in four different river basins from central Slovenia. Master's Thesis. Nova Gorica, School of Environmental Sciences, Nova Gorica Polytechnic, 72 pp.

Mori N., Simčič T., Lukančič S., Brancelj A. (2011): The effect of in-stream gravel extraction in a pre-alpine gravel-bed river on hyporheic invertebrate community. Hydrobiol. 667: 15-30. DOI: https://doi.org/10.1007/s10750-011-0648-x

Olsen D.A., Townsend C.R. (2003): Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biol. 48: 1363–1378. DOI: https://doi.org/10.1046/j.1365-2427.2003.01097.x

Olsen D.A., Townsend C.R. (2005): Flood effects on invertebrates, sediments and particulate organic matter in the hyporheic zone of a gravel-bed stream Freshwater Biol. 50: 839-853. DOI: https://doi.org/10.1111/j.1365-2427.2005.01365.x

Orghidan T. (1959): Ein neuer Lebensraum des Unterirdischen Wassers der hyporheischen Biotope. Arch. Hydrobiol. 55: 392-414.

Packman A.I., Bencala K.E. (2000): Modelling subsurface hydrological interactions. In: Jones J. B. & P. J. Mulholland (Eds.), Streams and ground waters. Academic Press, New York, pp. 45–80. DOI: https://doi.org/10.1016/B978-012389845-6/50003-X

Poff N.L., Ward J.V. (1990): The physical habitat template of lotic systems: recovery in the context of historical pattern of spatio-temporal heterogeneity. Environ. manage. (N.Y.) 14: 629-645. DOI: https://doi.org/10.1007/BF02394714

Reice S.R. (1985): Experimental disturbance and the maintenance of species diversity in a stream community. Oecologia 67: 90-97. DOI: https://doi.org/10.1007/BF00378456

Rivosecchi L. (1984): Ditteri. Guide per il riconoscimento delle specie animali delle acque interne italiane. Stamperia Valdonega, Verona, 176 pp.

Robertson A.L., Lancaster J. Hildrew A.G. (1995): Stream hydraulics and the distribution of microcrustacea: A role for refugia? Freshwater Biol. 33: 469-484. DOI: https://doi.org/10.1111/j.1365-2427.1995.tb00407.x

Schwoerbel J. (1961): Über die Lebensbedingungen und die Besiedlung des hyporheischen Lebensraumes. Arch. Hydrobiol. Suppl. 25: 182-214.

Schwoerbel J. (1964): Die Bedeutung des Hyporheals für die benthischen Lebensgemeinschaften des Fliessgewässers. Verh. Int . Ver. Limnol. 15: 215-226. DOI: https://doi.org/10.1080/03680770.1962.11895523

Simčič T., Mori N. (2007): Intensity of mineralization in the hyporheic zone of the prealpine river Baca (West Slovenia). Hydrobiol. 586: 221–234. DOI: https://doi.org/10.1007/s10750-007-0621-x

Sivec I. (2003): Plecoptera. In: Sket B., Gogala M., Kuštor V. (Eds.), Živalstvo Slovenije. Tehniška založba Slovenije, Ljubljana, pp. 290-294.

Sket B., Velkovrh F. (1981): Phreatische Fauna in Ljubljansko Polje (Ljubljana-Ebene, Jugoslawien) – ihre ökologische Verteilung und zoogeographische Beziehungen. Int. J. Speleol. 11: 105-121. DOI: https://doi.org/10.5038/1827-806X.11.1.11

Stanford J.A., Ward J.V., Ellis B.K. (1994): Ecology of the alluvial aquifers of the Flathead river, Montana. In: Gibert J., Danielopol D., Stanford J.A. (Eds.), Groundwater ecology. Academic Press, New York, pp. 367-390. DOI: https://doi.org/10.1016/B978-0-08-050762-0.50021-8

Studeman D., Landolt P., Sartori M., Hefti D., Tomka I. (1992): Ephemeroptera. Insecta Helvetica, Fauna 9. Imprimerie Mauron & Tinguely & Lachat SA, Friburg, 176 pp.

Swan C.M., Palmer M. (2000): What drives small-scale spatial patterns in lotic meiofauna communities? Freshwater Biol. 44: 109-212. DOI: https://doi.org/10.1046/j.1365-2427.2000.00587.x

Ter Braak C.J.F., Šmilauer P. (2002): CANOCO, version 4.5.

Townsend C.R. (1989): The patch dynamic concept of stream community ecology. J. North Am. Benthol. Soc. 8: 36-50. DOI: https://doi.org/10.2307/1467400

Townsend C.R., Hildrew A.G. (1994): Species traits in relation to a habitat templet for river systems. Freshwater Biol. 31: 265-275. DOI: https://doi.org/10.1111/j.1365-2427.1994.tb01740.x

White D.S., Elzinga C.H., Hendricks S.P. (1987): Temperature patterns within the hyporheic zone of a Northern Michigan River. J. North Am. Benthol. Soc. 6: 85-91. DOI: https://doi.org/10.2307/1467218

Williams D.D. (1977): Movements of benthos during recolonisation of temporary streams. Oikos 29: 306-312. DOI: https://doi.org/10.2307/3543619

Wood P.J., Boulton A.J., Little S., Stubbington R. (2010): Is the hyporheic zone a refugium for aquatic macroinvertebrates during severe low flow conditions? Fundam. appl. limnol. 176: 377-390. DOI: https://doi.org/10.1127/1863-9135/2010/0176-0377

Zwick P. (2004): Key to the west palaearctic genera of stoneflies (Plecoptera) in the larval stage. Limnol. 34: 315-348. DOI: https://doi.org/10.1016/S0075-9511(04)80004-5

Downloads

Published

30.06.2011

Issue

Section

Scientific paper

How to Cite

Mori, N., & Brancelj, A. (2011). Spatial and temporal variability of hyporheic invertebrate community within a stream reach of the River Bača (W Slovenia). Natura Sloveniae, 13(1), 25-38. https://doi.org/10.14720/ns.13.1.25-38

Similar Articles

1-10 of 118

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)