The upper Neretva River discontinuum: gradients of taxonomic and functional diversity of benthic invertebrates in a wild Balkan river

Authors

  • Edurne Estévez Department of Ecology, Fluvial Ecosystem Ecology, University of Innsbruck https://orcid.org/0000-0001-6847-6089
  • Davina Dietrich Department of Ecology, Fluvial Ecosystem Ecology, University of Innsbruck
  • Simone Sahler Department of Ecology, Fluvial Ecosystem Ecology, University of Innsbruck
  • Fabian Vassanelli Department of Ecology, Fluvial Ecosystem Ecology, University of Innsbruck
  • Sara Widera Department of Ecology, Fluvial Ecosystem Ecology, University of Innsbruck
  • Jan Martini Department of Ecology, Fluvial Ecosystem Ecology, University of Innsbruck
  • Wolfgang Wanek Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna
  • Gabriel Singer Department of Ecology, Fluvial Ecosystem Ecology, University of Innsbruck

DOI:

https://doi.org/10.14720/ns.25.3.111-135

Keywords:

allochthonous assimilation, trophic position, stable isotopes, EPT taxa, food web

Abstract

Free-flowing rivers are highly valuable to understand the taxonomic and functional community structure of organisms that inhabit fluvial ecosystems. We investigated patterns of macroinvertebrate community composition and food web structure using stable isotopes (δ13C and δ15N), including potential environmental drivers, over a free-flowing river continuum in the upper course of the Neretva River in Bosnia and Herzegovina. Results showed a high taxonomic diversity, a high percentage of EPT taxa (Ephemeroptera, Plecoptera, Trichoptera), and a slightly heterotrophic ecosystem (average allochthonous assimilation = 54%). The taxonomic composition differed prominently between a tributary located upstream and the mainstem. However, we also found notable species turnover between the upper (headwater and midsection) reaches and the downstream reaches of the mainstem. Macroinvertebrate abundance and the percentage of EPT peaked downstream while midsection reaches showed the highest taxonomic richness and diversity and allochthonous assimilation. Most of the functional metrics (maximum and average trophic position and isotopic richness and evenness) showed pronounced discontinuities in their spatial patterns, which did not follow the predictions of the River Continuum Concept. These results highlight the uniqueness of this section of the Neretva, where natural discontinuities structure macroinvertebrate communities in ways and by mechanisms not captured by smooth ecological concepts.

References

Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, Winemiller KO, Ripple WJ. 2021. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio. 50: 85–94. https://doi.org/10.1007/s13280-020-01318-8 DOI: https://doi.org/10.1007/s13280-020-01318-8

Bakrac A, Rimceska B, Bilbija B, Atanacković A, Džaferović A, Nikolić V, Marković V. 2021. Aquatic macroinvertebrates diversity in the upper stretch of Una River (Una National Park, SW Bosnia and Herzegovina). Ecologia Balkanica. 13: 131–141.

Belletti B, Garcia de Leaniz C, Jones J, Bizzi S, Börger L, Segura G, Castelletti A, van de Bund W, Aarestrup K, Barry J, et al. 2020. More than one million barriers fragment Europe’s rivers. Nature. 588: 436–441. https://doi.org/10.1038/s41586-020-3005-2 DOI: https://doi.org/10.1038/s41586-020-3005-2

Bredenhand E, Samways MJ. 2009. Impact of a dam on benthic macroinvertebrates in a small river in a biodiversity hotspot: Cape Floristic Region, South Africa. Journal of Insect Conservation. 13: 297–307. https://doi.org/10.1007/s10841-008-9173-2 DOI: https://doi.org/10.1007/s10841-008-9173-2

Brown BL, Swan CM, Auerbach DA, Campbell Grant EH, Hitt NP, Maloney KO, Patrick C. 2011. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. Journal of the North American Benthological Society. 30: 310–327. DOI: https://doi.org/10.1899/10-129.1

Bruns DA, Minshall GW, Cushing CE, Cummins KW, Brock JT. 1984. Tributaries as modifiers of the river continuum concept: analysis by poplar ordination and regression models. Archiv fur hydrobiology.

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, et al. 2012. Biodiversity loss and its impact on humanity. Nature. 486: 59–67. https://doi.org/10.1038/nature11148 DOI: https://doi.org/10.1038/nature11148

Collins SM, Kohler TJ, Thomas SA, Fetzer WW, Flecker AS. 2016. The importance of terrestrial subsidies in stream food webs varies along a stream size gradient. Oikos. 125: 674–685. https://doi.org/10.1111/oik.02713 DOI: https://doi.org/10.1111/oik.02713

Consortium A, others. 2002. Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1: 2002.

Cucherousset J, Villéger S. 2015. Quantifying the multiple facets of isotopic diversity: New metrics for stable isotope ecology. Ecological Indicators. 56: 152–160. https://doi.org/10.1016/j.ecolind.2015.03.032 DOI: https://doi.org/10.1016/j.ecolind.2015.03.032

Daily GC. 2012. Nature’s Services: Societal dependence on natural ecosystems. Island Press. DOI: https://doi.org/10.2307/j.ctt5vm5bn.49

Datry T, Bonada N, Heino J. 2016. Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos. 125: 149–159. https://doi.org/10.1111/oik.02922 DOI: https://doi.org/10.1111/oik.02922

Del Campo R, Jechsmayr B, Settles V, Ströder M, Singer G. 2023. Nutrient inputs shape ecosystem functioning gradients along the pristine, upper Neretva River, Bosnia and Herzegovina. Natura Sloveniae. 25(3): 239-263. https://doi.org/10.14720/ns.25.2.239-263

Doi H, Chang K-H, Ando T, Ninomiya I, Imai H, Nakano S. 2009. Resource availability and ecosystem size predict food-chain length in pond ecosystems. Oikos. 118: 138–144. https://doi.org/10.1111/j.1600-0706.2008.17171.x DOI: https://doi.org/10.1111/j.1600-0706.2008.17171.x

Doretto A, Piano E, Larson CE. 2020. The river continuum concept: lessons from the past and perspectives for the future. The Canadian Journal of Fisheries and Aquatic Sciences. 77: 1853-1864. https://doi.org/10.1139/cjfas-2020-0039 DOI: https://doi.org/10.1139/cjfas-2020-0039

Duffy JE, Godwin CM, Cardinale BJ. 2017. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature. 549: 261–264. https://doi.org/10.1038/nature23886 DOI: https://doi.org/10.1038/nature23886

Estévez E, Álvarez‐Martínez JM, Álvarez‐Cabria M, Robinson CT, Battin TJ, Barquín J. 2019. Catchment land cover influences macroinvertebrate food‐web structure and energy flow pathways in mountain streams. Freshwater Biology. 64: 1557–1571. https://doi.org/10.1111/fwb.13327 DOI: https://doi.org/10.1111/fwb.13327

Fenoglio S, Bo T, Cammarata M, López-Rodríguez MJ, Tierno de Figueroa JM. 2014. Seasonal variation of allochthonous and autochthonous energy inputs in an alpine stream. Journal of Limnology. 73. https://doi.org/10.4081/jlimnol.2014.1082 DOI: https://doi.org/10.4081/jlimnol.2014.1082

Frazer GW, Canham CD, Lertzman KP. 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies. Millbrook, New York.

Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, Babu S, Borrelli P, Cheng L, Crochetiere H, et al. 2019. Mapping the world’s free-flowing rivers. Nature. 569: 215–221. https://doi.org/10.1038/s41586-019-1111-9 DOI: https://doi.org/10.1038/s41586-019-1111-9

Guo F, Kainz MJ, Sheldon F, Bunn SE. 2016. The importance of high-quality algal food sources in stream food webs - current status and future perspectives. Freshwater Biology. 61: 815–831. https://doi.org/10.1111/fwb.12755 DOI: https://doi.org/10.1111/fwb.12755

Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM. 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology. 60: 845–869. https://doi.org/10.1111/fwb.12533 DOI: https://doi.org/10.1111/fwb.12533

Illies J, Botosaneanu L. 1963. Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considerées surtout du point de vue faunistique. SIL Communications. 1953-1996 12: 1–57. DOI: https://doi.org/10.1080/05384680.1963.11903811

Jacquet C, Carraro L, Altermatt F. 2022. Meta-ecosystem dynamics drive the spatial distribution of functional groups in river networks. Oikos. 2022: e09372. https://doi.org/10.1111/oik.09372 DOI: https://doi.org/10.1111/oik.09372

Lau DCP, Leung KMY, Dudgeon D. 2009. Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society. 28: 426–439. https://doi.org/10.1899/07-079.1 DOI: https://doi.org/10.1899/07-079.1

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, et al. 2022. Vegan: Community Ecology Package.

Operta M, Pamuk S. 2015. Gološke karakteristike in tektonska građa slivnog područja gornje Neretve. Acta geographica Bosniae et Herzegovinae 4: 69-81

Post DM. 2002. The long and short of food-chain length. Trends in Ecology & Evolution. 17: 269–277. https://doi.org/10.1016/S0169-5347(02)02455-2 DOI: https://doi.org/10.1016/S0169-5347(02)02455-2

Previšić A, Walton C, Kučinić M, Mitrikeski PT, Kerovec M. 2009. Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple microrefugia within the Balkan Peninsula. Molecular Ecology. 18: 634–647. https://doi.org/10.1111/j.1365-294X.2008.04046.x DOI: https://doi.org/10.1111/j.1365-294X.2008.04046.x

Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, et al. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews. 94: 849–873. https://doi.org/10.1111/brv.12480 DOI: https://doi.org/10.1111/brv.12480

Rice SP, Greenwood MT, Joyce CB. 2001. Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. The Canadian Journal of Fisheries and Aquatic Sciences. 58: 824–840. https://doi.org/10.1139/cjfas-58-4-824 DOI: https://doi.org/10.1139/f01-022

Schiemer F, Beqiraj S, Drescher A, Graf W, Egger G, Essl F, Frank T, Hauer C, Hohensinner S, Miho A, et al. 2020. The Vjosa River corridor: a model of natural hydro-morphodynamics and a hotspot of highly threatened ecosystems of European significance. Landscape Ecology. 35: 953–968. https://doi.org/10.1007/s10980-020-00993-y DOI: https://doi.org/10.1007/s10980-020-00993-y

Schmidt-Kloiber A, Hering D. 2015. Www.freshwaterecology.info – An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators. 53: 271–282. https://doi.org/10.1016/j.ecolind.2015.02.007 DOI: https://doi.org/10.1016/j.ecolind.2015.02.007

Singer GA, Panzenböck M, Weigelhofer G, Marchesani C, Waringer J, Wanek W, Battin TJ. 2005. Flow history explains temporal and spatial variation of carbon fractionationin stream periphyton. Limnology and Oceanography. 50: 706–712. https://doi.org/10.4319/lo.2005.50.2.0706 DOI: https://doi.org/10.4319/lo.2005.50.2.0706

Stevens LE, Aly AA, Arpin SM, Apostolova I, Ashley GM, Barba PQ, Barquín J, Beauger A, Benaabidate L, Bhat SU, et al. 2022. The ecological integrity of spring ecosystems: a global review. In: Imperiled: The Encyclopedia of Conservation. DellaSala DA, Goldstein MI, editors. Oxford (GB): Elsevier. p. 436–451. https://doi.org/10.1016/B978-0-12-821139-7.00111-2 DOI: https://doi.org/10.1016/B978-0-12-821139-7.00111-2

Thompson RM, Townsend CR. 2005. Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos. 108: 137–148. https://doi.org/10.1111/j.0030-1299.2005.11600.x DOI: https://doi.org/10.1111/j.0030-1299.2005.11600.x

Tockner K, Tonolla D, Bremerich V, Jähnig SC, Robinson CT, Zarfl C. 2022. Chapter 1 - Introduction to European rivers. In: Rivers of Europe (Second Edition). Tockner K, Zarfl C, Robinson CT, editors. Elsevier. p. 1–26. https://doi.org/10.1016/C2017-0-03745-X DOI: https://doi.org/10.1016/B978-0-08-102612-0.00001-8

Torgersen CE, Gresswell RE, Bateman DS, Burnett KM. 2008. Spatial identification of tributary impacts in river networks. In: Rice SP, Roy AG, Rhoads BL, editors. River confluences, tributaries and the fluvial network. John Wiley & Sons, Ltd. p. 159-181. DOI: https://doi.org/10.1002/9780470760383.ch9

Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences. 37: 130-137 https://doi.org/10.1139/f80-017 DOI: https://doi.org/10.1139/f80-017

Wallace JB, Webster JR. 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology. 41: 115–139. https://doi.org/10.1146/annurev.en.41.010196.000555 DOI: https://doi.org/10.1146/annurev.en.41.010196.000555

Wickham H. 2016. Ggplot2: Elegant graphics for data analysis. Cham: Springer. DOI: https://doi.org/10.1007/978-3-319-24277-4

Downloads

Additional Files

Published

31.12.2023

How to Cite

Estévez, E., Dietrich, D., Sahler, S., Vassanelli, F., Widera, S., Martini, J., Wanek, W., & Singer, G. (2023). The upper Neretva River discontinuum: gradients of taxonomic and functional diversity of benthic invertebrates in a wild Balkan river. Natura Sloveniae, 25(3), 111-135. https://doi.org/10.14720/ns.25.3.111-135

Similar Articles

1-10 of 41

You may also start an advanced similarity search for this article.