Herbicides weed management in changing environmental conditions
DOI:
https://doi.org/10.14720/aas.2023.119.4.12497Keywords:
environmental conditions, weeds, control, herbicidesAbstract
Elevate CO2 levels in the atmosphere might have prominent effects on weed phenology, consequently changing herbicide performance on weeds. Increased atmospheric CO2 concentration increase leaf thickness and reduce stomatal number and conductance potentially reducing the absorption of POST–emergence applied herbicides. From the other side, higher temperature stimulates stomata conductance, reduce the viscosity of epicuticle waxes, thus increasing the penetration and diffusion of herbicides as a result of changes in the composition and the permeability of the cuticle. However, in some circumstances higher temperatures might cause hastened metabolism, which consequently decreases herbicide activity on target plants. In conditions of higher RH, cuticle hydration and stomatal conductance increases, consequently increases the permeability and translocation particularly of hydrophilic herbicides into the leaves. Similar, under higher irradiance, stomata stay open, photosynthetic rate increases consequently increasing absorption, penetration and subsequent phloem translocation of POST–em systemic herbicides in weed tissue. Drought might cause increased cuticle thickness and increased leaf pubescence, with consequent reductions in herbicide absorption into the leaves. Rainfall after POST–emergence herbicides application might reduce their efficiency through washing out. Increased frequency and intensity of precipitation will have a negative effect on absorption, translocation, and activity of PRE–emergence herbicides.
References
Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free– air CO2 enrichment (FACE)? A meta–analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytology, 165, 351-371. https://doi.org/10.1111/j.1469-8137.2004.01224.x
Amare, T. (2016). Review on impact of climate change on weed and their management. Journal of Agricultural, Biologicaland Environmental Statistics, 2, 21–27. https://doi.org/10.11648/j.ajbes.20160203.12
Anderson, D.M., Swanton, C. J., Hall, J. C., Mersey, B. G. (1993). The influence of temperature and relative humidity on the efficacy of glufosinate–ammonium. Weed Research, 33, 139-147. https://doi.org/10.1111/j.1365-3180.1993.tb01927.x
Anwar, M. P., Islam, A. K. M. M., Yeasmin, S., Rashid, M. H., Juraimi, A. S., Ahmed, S., Shrestha, A. (2021).Weeds and their Responses to Management Efforts in a Changing Climate. Agronomy, 11, 1921. https://doi.org/10.3390/agronomy11101921
Archambault, D. J., Li, X., Robinson, D., O’Donovan, J. R., Klein, K. K. (2001). The effects of elevated CO2 and temperature on herbicide efficacy and weed/crop competition. Report to the Prairie Adaptation Res. Coll. No. 29.
Arıkan, N. , Burçak, A. A. , Türktemel, İ. & Akbaş, B. (2016). Persistance of herbicides in soil. The Turkish Journal Of Occupational/Environmental Medicine and Safety, 12(2)), 0-0. Retrieved from https://dergipark.org.tr/en/pub/turjoem/issue/27017/284012.
Atienza, J., Tabernero, M. T., Álvarez-Benedı, J., Sanz, M. (2001). Volatilisation of triallate as affected by soil texture and air velocity. Chemosphere, 42, 257-261. https://doi.org/10.1016/S0045-6535(00)00075-8
Bailey, S. W. (2003). Climate change and decreasing herbicide persistence. Pest Management Science, 60, 158-162.
Bailey, S. W. (2004). Climate change and decreasing herbicide persistence. Pest Management Science, 60(2), 158-162.
Billore, S. D. (2019), Weeds in Soybean vis-a-vis other crops under climate change-
A Review. Soybean Research 17(1&2), 01-21.
Bowes, G. (1996). Photosynthetic responses to changing atmospheric carbon dioxide concentration. In: Photosynthesis and the Environment, Baker, N.R., Eds., Kluwer Publishing, Dordrecht, The Netherlands, 387-407. https://doi.org/10.1007/0-306-48135-9_16
Bunce, J. A., (1993). Growth, survival, competition, and canopy carbon dioxide and water vapor exchange of first year alfalfa at an elevated CO2 concentration. Photosynthetica, 29, 557-565.
Bunce, J. A., & Ziska, L. H., (2000). Crop ecosystem responses to climatic change: crop/weed interactions. In: Reddy, K.R., Hodges, F. (Eds.), Climate Change and Global Crop Productivity, 333-348. https://doi.org/10.1079/9780851994390.0333
Camargo, E. R., Senseman, S. A., McCauley, G. N., Bowe, S., Harden, J., Guice, J. B. (2012). Interaction between saflufenacil and imazethapyr in red rice (Oryza ssp.) and hemp sesbania (Sesbania exaltata) as affected by light intensity. Pest Management Science, 68(7), 1010-1018. https://doi.org/10.1002/ps.3260
Campbell, J. R. & Penner, D. (1985). Abiotic transformation of sethoxydim. Weed Science, 33, 435-439. https://doi.org/10.1017/S0043174500082606
Caseley, J. C. & Coupland, D. (1985). Environmental and plant factors affecting glyphosate uptake, movement and activity. In: The herbicide glyphosate. Eds. E Grossbarb and D. Atkinsson: Butterworths, 92-123.
Chandrasena, N. (2009). How will weed management change under climate change? Some perspectives. Journal Crop Weed, 5(2), 95-105.
Chauhan, B. S., Prabhjyot-Kaur Mahajan, G., Randhawa R. J., Singh, H., Kang, M. S. (2014). Global warming and its possible impact on agriculture in India. Advanced Agronomy, 123, 65-121. https://doi.org/10.1016/B978-0-12-420225-2.00002-9
Clements, D. R., DiTommaso, A., Hyvönen, T. (2014). Ecology and management of weeds in a changing climate. pp. 13-37. In: B.S. Chauhan and G. Mahajan (eds.). Recent Advances in Weed Management. Springer, New York. https://doi.org/10.1007/978-1-4939-1019-9_2
Davidson, A. M., Jennions. M., Nicotra, A. B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A metaanalysis. Ecology Letters, 14, 419-431. https://doi.org/10.1111/j.1461-0248.2011.01596.x
Devine, M. D., Duke, S. O., Fedtke, C. (1993). Foliar absorption of herbicides. Prentice–Hall, Englewood Cliffs, NJ pp. 29-52
Dukes, J. S., & Mooney, H. A. (1999). Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14(4), 135-139. https://doi.org/10.1016/S0169-5347(98)01554-7
Dukes, J. S., Pontius, J., Orwig, D., Garnas, J. R., Rodgers, V. L., Brazee, N., Ayres, M. (2009). Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Canadian Journal of Forest Research, 39, 231-248. https://doi.org/10.1139/X08-171
Falb, L. N., Bridges, D. C., Smith, A. E. Jr. (1990). Effect of pH and adjuvants on clethodim photodegradation. Journal of Agricultural Food Chemistry, 38, 875-878. https://doi.org/10.1021/jf00093a060
Fausey, J. C., Renner, K. A., (2001). Environmental effects on CGA-248757 and flumiclorac efficacy/soybean tolerance. Weed Science, 49, 668-674. https://doi.org/10.1614/0043-1745(2001)049[0668:EEOCAF]2.0.CO;2
Fernandino, G., Elliff, C. I., Silva, I. R. (2018). Ecosystem–based management of coastal zones in face of climate change impacts: Challenges and inequalities. Journal of Environmental Management, 215, 32–39. https://doi.org/10.1016/j.jenvman.2018.03.034
Froud-Williams, R. J. (1996). Weeds and climate change: Implications for their ecology and control. Aspects of Applied Biology, 45, 187-196.
Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems & Environment, 97(1), 1-20. https://doi.org/10.1016/S0167-8809(03)00125-7
Ganie, Z. A., Jugulam, M., Jhala, A. J. (2017). Temperature influences efficacy, absorption, and translocation of 2,4-D or glyphosate in glyphosate–resistant and glyphosate–susceptible common ragweed (Ambrosia artemisiifolia) and giant ragweed (Ambrosia trifida). Weed Science, 65, 588-602. https://doi.org/10.1017/wsc.2017.32
Gealy, D. R. & Buman, R. A. (1989) Response of photosynthesis and growth of jointed goatgrass and winter wheat to photosynthetic herbicides and temperature. Proceedings, Western Society of Weed Science, 42, 151-152.
Godar, A. S, Varanasim V. K., Nakka, S., Prasad, P. V. V., Thompson, C. R., Mithila, J. (2015). Physiological and molecular mechanisms of differential sensitivity of Palmer amaranth (Amaranthus palmeri) to mesotrione at varying growth temperatures. PLoSONE 10:e0126731. https://doi.org/10.1371/journal.pone.0126731
Hatterman-Valenti, H., Pitty, A., Owen, M. (2011). Environmental effects on velvetleaf (Abutilon theophrasti) epicuticular wax deposition and herbicide absorption. Weed Science, 59(1), 14-21. https://doi.org/10.1614/WS-D-10-00061.1
Hatzios, K. K., & Penner, D. (1982). Metabolism of herbicides in higher plants. CEPCO iv. Burgess Publ., Edina, MN.
Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M., Meinke, H. (2007). Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA, 104, 19691-19696. https://doi.org/10.1038/s41598–019–38729–x
Hull, H. H., Morton, H. L., Wharrie, J. R. (1975). Environmental influences on cuticle development and resultant foliar penetration. Botanical Review, 41, 421-452. https://doi.org/10.1007/BF02860832
Hwang, I. T., Hong, K. S., Choi, J. S., Kim, H. R., Jeon, D. J., Cho, K. Y. (2004). Protoporphyrinogen IX–oxidizing activities involved in the mode of action of a new compound N–[4–chloro–2–fluoro–5–{3–(2–fluorophenyl)–5–methyl–4.5–dihydroisoxazol– 5–yl–methoxyl–phenyl]–3, 4, 5, 6–tetrahydrophthalimide. Pesticide Biochemistry Physiology, 80(2), 123-130. https://doi.org/10.1016/j.pestbp.2004.06.006
Jabran, K., & Doğan, M. N. (2018). High carbon dioxide concentration and elevated temperature impact the growth of weeds, but do not change the efficacy of glyphosate. Pest Management Science, 74(3), 766-771. https://doi.org/10.1002/ps.4788
Jackson, L., Wheeler, S., Hollander, A., O’Geen, A., Orlove, B., Six, J., Tomich, T. P. (2011). Case study on potential agricultural responses to climate change in a California landscape. Climate Change, 109, 407-427. https://doi.org/10.1007/s10584-011-0306-3
Johnson, B. C., & Young, B. G. (2002). Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Science, 50, 157-161. https://doi.org/10.1614/0043-1745(2002)050[0157:IOTARH]2.0.CO;2
Jursík, M., Kočárek, M., Hamouzová, K., Soukup, J., Venclová, V. (2013). Effect of precipitation on the dissipation, efficacy and selectivity of three chloroacetamide herbicides in sunflower. Plant, Soil and Environment, 59, 175-182. https://doi.org/10.17221/750/2012-PSE
Jursık, M., Kocarek, M., Hamouzova, K., Soukup, J., Venclova , V. (2013). Effect of precipitation on the dissipation, efficacy and selectivity of three chloroacetamide herbicides in sunflower. Plant Soil and Environment, 59, 175-182. https://doi.org/10.17221/750/2012-PSE
Kanampiu, F. K., Kabambe, V., Massawe, C., Jasi, L., Friesen, D., Ransom, J. K. Gressel, J. (2003). Multi–site, multiseason field tests demonstrate that therbicide seed–coating herbicide–resistance maize controls Striga spp. and increases yields in several African countries. Crop Protection, 22(5), 697-706. https://doi.org/10.1016/S0261-2194(03)00007-3
Karl, T. R., Melillo, J. M., Peterson, T. C. (eds) (2009). Global climate change impacts in the United States. A state of knowledge report from the U.S. Global Change Research Program. Cambridge University Press, New York, USA, 196 p.
Keikotlhaile, B.M. (2011). Influence of the processing factors on pesticide residues in fruits and vegetables and its application in consumer risk assessment. PhD Dissertation, Ghent University, Ghent.
Kells, J. J., Meggitt, W. F., Penner, D. (1984). Absorption, translocation, and activity offluazifop–butyl as influenced by plant growth stage and environment. Weed Science, 32, 143-149. https://doi.org/10.1017/S0043174500058689
Kleinman, Z., Ben-Ami, G., Rubin, B. (2016). From sensitivity to resistance –factors affecting the response of Conyza spp. to glyphosate. Pest Management Science, 72, 1681-1688. https://doi.org/10.1002/ps.4187
Kudsk, P., Olesen, T., Thonke, K. E. (1990). The influence of temperature, humidity and simulated rain on the performance of thiameturon-methyl. Weed Research, 30, 261-269. https://doi.org/10.1111/j.1365-3180.1990.tb01712.x
Kumaratilake A. R., & Preston C. (2005). Low temperature reduces glufosinate activity and translocation in wild radish (Raphanus raphanistrum). Weed Science, 53, 10-16. https://doi.org/10.1614/WS-03-140R
Loladze, I. (2014). Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3:e02245. https://doi.org/10.7554/eLife.02245
Madafiglio, G. P., Medd, R. W., Cornish, P. S., Van de Ven, R. (2000) Temperature mediated responses of flumetsulam and metosulam on Raphanus raphanistrum. Weed Research, 40, 387-395. https://doi.org/10.1046/j.1365-3180.2000.00200.x
Mahan, J. R., Dotray, P. A., Light G. G. (2004). Thermal dependence of enzyme function and inhibition; implications for, herbicide efficacy and tolerance. Physiologia Plantarum, 20, 187-195. https://doi.org/10.1111/j.0031-9317.2004.0255.x
Malarkodi, N., Manikandan, N., Ramaraj, A. P. (2017). Impact of climate change on weeds and weed management. Journal of Innovative Agriculture, 4, 1-6.
Manea, A., Leishman, M. R., Downey, P. O. (2011). Exotic C4 grasses have increased tolerance to glyphosate under elevated carbon dioxide. Weed Science, 59, 28-36. https://doi.org/10.1614/WS-D-10-00080.1
Manisankar, G., & Ramesh, T. (2019). Response of weeds under elevated CO2 and temperature: A review. Journal of Pharmacognosy and Phytochemistry, SP2, 427-431.
Martini, L. F., Burgos, N. R., Noldin, J. A., Avila, L. A., Salas, R. A. (2015). Absorption, translocation and metabolism of bispyribac–sodium on rice seedlings under cold stress. Pest Management Science, 71, 1021-1029. https://doi.org/10.1002/ps.3882
Mathiassen, S. K., & Kudsk, P. (1996). Influence of climate scenarios on herbicide performance. Second International Weed Control Congress, 3, 905-910.
Matzrafi, M. (2018). Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Management Science, 75, 9-13. https://doi.org/10.1002/ps.5121
Matzrafi, M., Brunharo, C., Tehranchian, P., Hanson, B. D., Jasieniuk, M. (2019). Increased temperatures and elevated CO2 levels reduce the sensitivity of Conyza canadensis and Chenopodium album to glyphosate. Scientific Reports, 9, 2228. https://doi.org/10.1038/s41598-019-38729-x
McInnes, D., Marker, K. N., Blackshaw, R. E., Vanden Born, W. H. (1992). The influence of ultraviolet light on the phytotoxicity of sethoxydim tank mixtures with various adjuvants. p. 205-213. In: Foy, C. L., ed. Adjuvants for Agrichemicals. CRC Press, Boca Raton. FL. https://doi.org/10.1201/9781351069502-17
McMullan, P. M. (1996). Grass herbicide efficacy as influenced by adjuvant, spray solution pH, and ultraviolet light. Weed Technology, 10, 72-77. https://doi.org/10.1017/S0890037X00045735
Medd, R. W., Van de Ven, R., Pickering, D. I., Nordblom, T. (2001). Determination of environment specific dose response relationships for clodinafop propargyl on Avena spp. Weed Research, 41, 351-368. https://doi.org/10.1046/j.1365-3180.2001.00243.x
Mollaee, M., Mobli, A., Chauhan, B. S. (2020). The response of glyphosate-resistant and glyphosate-susceptible biotypes of Echinochloa colona to carbon dioxide, soil moisture and glyphosate. Scientific Reports, 10, 329. https://doi.org/10.1038/s41598-019-57307-9.
Mulder, C. E .G., & Nalewaja, J. D. (1978). Temperature effect of phytotoxicity of soil–applied herbicides. Weed Science, 26, 566-570. https://doi.org/10.1017/S0043174500064560
Muzik, T. J. (1976). Influence of environmental factors on toxicity to plants. In: Herbicides: Physiology, Biochemistry, Ecology. Audus, L.J., Ed., Academic Press, New York, 203-247.
Nowak, R. S., Ellsworth, D. S., Smith, S. D. (2004). Functional responses of plants to elevated atmospheric CO2: do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162, 253-280. https://doi.org/10.1111/j.1469-8137.2004.01033.x
Oechel, W. C., & Strain, B. R. (1985). Native species responses to increased atmospheric carbon dioxide concentration. In: Strain BR and Cure JD eds. Direct Effects of Increasing Carbon Dioxide on Vegetation. University Press of the Pacific, Honolulu, HI.
Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16, 239-262. https://doi.org/10.1016/S1161-0301(02)00004-7
Olson, B. L., Al-Khatib, K., Stahlman, P., Isakson, P. J. (2000). Efficacy and metabolism of MON 37500 in Triticum aestivum and weedy grass species as affected by temperature and soil moisture. Weed Science, 48, 541-548. https://doi.org/10.1614/0043-1745(2000)048[0541:EAMOMI]2.0.CO;2
Ou J, Stahlman, P. W., & Jugulam, M. (2018). Reduced absorption of glyphosate and decreased translocation of dicamba contribute to poor control of kochia (Kochia scoparia) at high temperature. Pest Management Science, 74, 1134-1142. https://doi.org/10.1002/ps.4463
Pacanoski, Z., & Mehmeti, A. (2021). Weed control in sunflower (Helianthus annuus L.) with soil‒applied herbicides affected by a prolonged and limited rainfall. Poljoprivreda/Agriculture, 27(2), 3-14. https://doi.org/10.18047/poljo.27.2.1
Pacanoski, Z., Kolevska, D. D., Mehmeti, A. (2020). Tolerance of black locust (Robinia pseudoacacia L.) seedlings to PRE applied herbicides. Agriculture and Forestry, 66(2), 157-165. https://doi.org/10.17707/AgricultForest.66.2.15
Patterson, D. T. (1995). Weeds in a changing climate. Weed Science, 43, 685-701. https://doi.org/10.1017/S0043174500081832
Patterson, D. T., Westbrook, J. K., Joyce, R. J. V., Lingren, P. D., Rogasik, J. (1999). Weeds, insects and diseases. Climate Change, 43, 711-727. https://doi.org/10.1023/A:1005549400875
Pereira, M. R. R. (2010). Effect of herbicides on Brachiaria plantaginea plants submitted to water stress. Planta Daninha, 28, 1047-1058. https://doi.org/10.1590/S0100-83582010000500013
Pereira, M. R. R., Souza, G. S. F., Martins, D., Melhoranc, A., Filho, A. L., Klar, A. E. (2011). Responses of Eleusine indica plants under different water conditions to ACCase–inhibiting herbicides. Planta Daninha, 29, 397-404. https://doi.org/10.1590/S0100-83582011000200017
Poorter, H., & Navas, M. (2003). Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phycologist, 157, 175-198. https://doi.org/10.1046/j.1469-8137.2003.00680.x
Price, C. E. (1983). The effect of environment on foliage uptake and translocation of herbicides. In: Biologists, A.O.A. (Ed.), Aspects of Applied Biology 4: Influence of Environmental Factors on Herbicide Performance and Crop and Weed Biology, vol. 4. The Association of Applied Biologists, Warwick, pp. 157-169.
Ramsey, R. J. L., Stephenson, G. R., Hall, J. C. (2002). Effect of relative humidity on the uptake, translocation, and efficacy of glufosinate ammonium in wild oat (Avena fatua). Pesticide Biochemistry and Physiology, 73, 1-8. https://doi.org/10.1016/S0048-3575(02)00017-2
Raschke, K., Hanebuth, W. F., Farquhar, G. D. (1978). Relationship between stomatal conductance and light intensity in leaves of Zea mays L., derived from experiments using the mesophyll as shade. Planta 139, 73-77. https://doi.org/10.1007/BF00390813
Refatti, J. P., de Avila, L. A., Camargo, E. R., Ziska, L. H., Oliveira, C., Salas-Perez, R., Rouse, C. E., Roma-Burgos, N. (2019). High [CO2] and temperature increase resistance to cyhalofop–butyl in multiple-resistant Echinochloa colona. Frontiers in Plant Science, 10, Article 529. https://doi.org/10.3389/fpls.2019.00529
Riederer, M., & Schonherr, J. (1985). Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles: II. Permeability of the cuticular membrane. Ecotoxicology Environment Safety, 9, 196-208. https://doi.org/10.1016/0147-6513(85)90022-3
Ritter, R. L., & Coble, H. D. (1981). Influence of temperature and relative humidity on the activity of acifluorfen. Weed Science, 29(4), 480-485. https://doi.org/10.1017/S0043174500040030
Rodenburg, J., Meinke, H., Johnson, D. E. (2011). Challenges for weed management in African rice systems in a changing climate. Journal of Agricultural Sciences, 149, 427-435. https://doi.org/10.1017/S0021859611000207
Shekoofa, A., Brosnan, J. T., Vargas, J. J., Tuck, D. P., Elmore, M. T. (2020). Environmental effects on efficacy of herbicides for postemergence goosegrass (Eleusine indica) control. Scientific Report, 10, 20579. https://doi.org/10.1038/s41598-020-77570-5.
Sharma, S. D., & Singh, M., (2001). Environmental factors affecting absorption and bio–efficacy of glyphosate in Florida beggarweed (Desmodium tortuosum). Crop Protection, 20, 511-516. https://doi.org/10.1016/S0261-2194(01)00065-5
Shaw, D. R., Morris, W.H., Webster, E. P., Smith, D. B. (2000). Effects of spray volume and droplet size on herbicide deposition and common cocklebur (Xanthium strumarium) control. Weed Technology, 14(2), 321-326. https://doi.org/10.1614/0890-037X(2000)014[0321:EOSVAD]2.0.CO;2
Singh, R. P., Singh, R. K., Singh, M. K. (2011). Impact of climate and carbon dioxide change on weeds and their management–a review. Indian Journal of Weed Science, 43(1-2), 1-11.
Soukup, J., Jursık, M., Hamouz, P., Holec, J., Krupka, J., (2004). Influence of soil pH, rainfall, dosage, and application timing of herbicide Merlin 750 WG (isoxaflutole) on phytotoxicity level in maize (Zea mays L.). Plant Soil and Environment, 50, 88-94. https://doi.org/10.17221/3687-PSE
Stewart, C. L., Nurse, R. E., Sikkema, P. H. (2009). Time of day impacts postemergence weed control in corn. Weed Technology, 23, 346-355. https://doi.org/10.1614/WT-08-150.1
Stopps, G. J., Nurse, R. E., Sikkema, P. H. (2013). The effect of time of day on the activity of post emergence soybean herbicides. Weed Technology, 27, 690-695. https://doi.org/10.1614/WT-D-13-00035.1
Strachan, S. D., Casini, M. S., Heldreth, K. M., Scocas, J. A., Nissen, S. J., Bukun, B., … Brunk, G. (2010). Vapor movement of synthetic auxin herbicides: aminocyclopyrachlor, aminocyclopyrachlor–methyl ester, dicamba, and aminopyralid. Weed Science, 58, 103-108. https://doi.org/10.1614/WS-D-09-00011.1
Sutherland, W. J., Barnard, P., Broad, S., Clout, M., Connor, B., Côté, I.M., … Ockendon, N. (2017). A 2017 Horizon scan of emerging issues for global conservation and biological diversity. Trends in Ecology & Evolution, https://doi.org/10.1016/j.tree.2016.11.005. https://doi.org/10.1016/j.tree.2016.11.005
Taub, D. R., Miller, B., Allen, H. (2008). Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Global Change Biology, 14, 565-575. https://doi.org/10.1111/j.1365-2486.2007.01511.x
Upasani, R. R., & Barla, S. (2018). Weed dynamics in changing climate. International Journal of Current Microbiology and Applied Sciences, 7, 2554-2567.
van Rensburg, E., Breeze, V. G., (1990). Uptake and development of phytotoxicity following exposure to vapour of the herbicide 14C 2, 4-d butyl by tomato and lettuce plants. Environmental and Experimental Botany, 30, 405-414. https://doi.org/10.1016/0098-8472(90)90019-Z
Varanasi, A., Prasad, P. V. V., Jugulam, M. (2016). Impact of climate change factors on weeds and herbicide efficacy, In: Advances in Agronomy (ed. Sparks DL) 107-146. https://doi.org/10.1016/bs.agron.2015.09.002
Wang, S., Duan, L., Li, J., Tian, X., Li, Z. (2007). UV-B radiation increases paraquat tolerance of .two broad–leaved and two grass weeds in relation to changes in herbicide absorption and photosynthesis. Weed Research, 47(2), 122-128. https://doi.org/10.1111/j.1365-3180.2007.00555.x
Weller, S., Florentine, S. K., Mutti, N. K., Jha, P. K., Chauhan, B. S. (2019). Response of Chloris truncata to moisture stress, elevated carbon dioxide and herbicide application. Scientific Reports, 9, 10721. https://doi.org/10.1038/s41598-019-47237-x
Wichert, R. A., Bozsa, R., Talbert, R. E., Oliver, L. R. (1992).Temperature and relative–humidity effects on diphenylether herbicides. Weed Technology, 6(1), 19-24. https://doi.org/10.1017/S0890037X00034230
Wong, S. C. (1990). Elevated atmospheric partial pressure of CO2 and plant growth. II. Non-structural carbohydrate content in cotton plants and its effect on growth parameters. Photosynthesis Research, 23, 171-180. https://doi.org/10.1007/BF00035008
Zanatta, J. F., Procópio, S. O., Manica, R., Pauletto, E. A., Cargnelutti Filho, A., Vargas, L., Sganzerla, D. C., Rosenthal, M. D’. A., Pinto, J. J. O. (2008). Soil water contents and fomesafen efficacy in controlling Amaranthus hybridus. Planta Daninha, 26, 143-155. https://doi.org/10.1590/S0100-83582008000100015
Zhou, J., Tao, B. Messersmith, C. G., Nalewaja, J. D. (2007). Glyphosate efficacy on velvetleaf (Abutilon theophrasti) is affected by stress. Weed Science, 55, 240-244. https://doi.org/10.1614/WS-06-173.1
Ziska, L. H., & Teasdale, J. R. (2000). Sustained growth and increased tolerance to glyphosate observed in a C3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Australian Journal of Plant Physiology, 27, 159-164. https://doi.org/10.1071/PP99099
Ziska L. H., & McConnell L. L. (2015). Climate change, carbon dioxide, and pest biology: monitor, mitigate, management. Journal of Agricultural and Food Chemistry, 64, 6-12. https://doi.org/10.1021/jf506101h
Ziska, L. H., & Goins, E. W. (2006). Elevated atmospheric carbon dioxide and weed populations in. glyphosate treated soybean. Crop Science, 46, 1354-1359. https://doi.org/10.2135/cropsci2005.10-0378
Ziska, L.H., & Runion, G. B. (2007). Future weed, pest and disease problems for plants. In: Newton PCD, Carran A, Edwards GR, Niklaus PA (eds) Agroecosystems in a changing climate. CRC, Boston, pp 262-279. https://doi.org/10.1201/9781420003826.ch11
Ziska, L. H., Tomecek, M. B., Gealy. D. R. (2010) Evaluation of competitive ability between cultivated and red weedy rice as a function of recent and projected increases in atmospheric CO2. Agronomy Journal, 102, 118-123. https://doi.org/10.2134/agronj2009.0205
Ziska, L. H. (2016). The role of climate change and increasing atmospheric carbon dioxide on weed management: herbicide efficacy. Agriculture, Ecosystem and Environment, 231, 304-309. https://doi.org/10.1016/j.agee.2016.07.014
Ziska, L. H., & McClung, A. (2008). Differential response of cultivated and weedy (red) rice to recent and projected increases in atmospheric carbon dioxide. Agronomy Journal, 100, 1259-1263. https://doi.org/10.2134/agronj2007.0324
Ziska, L. H., Faulkner, S. S. Lydon, J. (2004). Changes in biomass and root: shoot ratio of field grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO2. Weed Science, 47, 608-615. https://doi.org/10.1017/S0043174500092341
Ziska, L. H. (2008). Rising atmospheric carbon dioxide and plant biology: The overlooked paradigm. DNA. Cell Biology, 27(4), 165-172. https://doi.org/10.1089/dna.2007.0726
Ziska, L. H., Teasdale, J. R., Bunce, J. A. (1999). Future atmospheric carbondioxide may increase tolerance to glyphosate. Weed Science, 47, 608-615. https://doi.org/10.1017/S0043174500092341
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Zvonko PACANOSKI, Arben Beni Mehmeti
This work is licensed under a Creative Commons Attribution 4.0 International License.