Investigating the growth characteristics, oxidative stress, and metal absorption of chickpea (Cicer arietinum L.) under cadmium stress and in silico features of HMAs proteins
DOI:
https://doi.org/10.14720/aas.2023.119.3.12555Keywords:
cadmium, chickpea, HMAs, oxidative stressAbstract
Heavy metal contamination can have a strong effect on the morphological and physiological characteristics of plants. In the present study, Cicer arietinum L. (chickpea) was exposed to different concentrations of cadmium (control, 2, 4, 8 μg Cd g-1 perlite) and the effect on plant growth and antioxidant enzymes were evaluated. The observed morphological changes in chickpea plant included stunted growth, reduced root system development and plant color change. A significant increase in enzyme activity of peroxidase, superoxide dismutase, catalase, and ascorbate peroxidase was observed at 4 μg Cd g-1 perlite, with a subsequent decrease when concentration was increased to 8 μg Cd g-1 perlite in the leaves of the plants. The highest cadmium levels were determined at a concentration of 8 μg Cd g-1 perlite. With the addition of 2 μg Cd g-1 perlite, manganese uptake in the aboveground part of the plant increased significantly, but then decrease at higher cadmium concentrations. In addition, zinc and copper levels decrease in the presence of cadmium. These results indicate that chickpea has a relatively high adsorption capacity for cadmium in aboveground tissues and special precautions should be taken when growing chickpea. In silico analysis led to the identification of 13 heavy metal ATPases (HMAs) in chickpea. These proteins contain 130 to 1032 amino acids with 3 to 18 exons. They are involved in the transfer of cadmium and zinc and help in heavy metal detoxification of plants. Bioinformatics studies have been conducted to better understand the mechanism by which the plant is able to combat heavy metal stress.
References
Akhter, F., Omelon, Ch., Gordon, R., Moser, D., Macfe, S. (2014). Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environmental and Experimental Botany, 100, 10-19. https://doi.org/10.1016/j.envexpbot.2013.12.005
Altaf, MA., Shahid, R., Ren, M. X., Naz, F., Altaf, MM. et al (2022). Melatonin mitigates cadmium toxicity by promoting root architecture and mineral homeostasis of tomato genotypes. Journal of Soil Science and Plant Nutrition, 22, 1112-1128. https://doi.org/10.1007/s42729-021-00720-9
Ayangbenro, AS., & Babalola, OO. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14, 94. https://doi.org/10.3390/ijerph14010094
Bae, W., & Chen, X. (2004). Proteomic study for the cellular responses to Cd2+ in Schizosaccharomyces pombe through amino acid-coded mass tagging and liquid chromatography tandem mass spectrometry. Molecular & Cellular Proteomics, 3, 596-607. https://doi.org/10.1074/mcp.M300122-MCP200
Benavides, MP., Gallego, SM., Tomaro, ML. (2005). Cadmium toxicity in plants. BJPP, 17, 21-34. https://doi.org/10.1590/S1677-04202005000100003
Bose, S., Bhattacharyya, A. (2008). Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere, 70, 1264-1272. https://doi.org/10.1016/j.chemosphere.2007.07.062
Bowler, C., Van, Camp, W., Van Montagu, M., Inzé, D., Asada, K. (1994). Superoxide dismutase in plants. Critical Reviews in Plant Sciences, 13(3), 199-218. https://doi.org/10.1080/07352689409701914
Bradford, MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Brzoska, MM, & Moniuszko-Jakoniuk, J. (2001). Interactions between cadmium and zinc in the organism. Food and Chemical Toxicology, 39(10), 967-980. https://doi.org/10.1016/S0278-6915(01)00048-5
Chellaiah, ER. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A minireview. Applied Water Science, 8(6), 154. https://doi.org/10.1007/s13201-018-0796-5
Chen, JW., Lu ,YQ., Chen, ZH. (2007). Variations in form of copper, cadmium and lead in rhizosphere soil of corn. Journal of Hunan Agricultural University, 33(5), 626.
Chkadua, G., Nozadze, E., Tsakadze, L., Shioshvili, L., Arutinova, N., Leladze, M., Dzneladze, S., Javakhishvili, M. (2022). Effect of H2O2 on Na,K-ATPase. Journal of Bioenergetics and Biomembranes, 54(5-6), 241-249. https://doi.org/10.1007/s10863-022-09948-1
Cregeen, S., Radišek, S., Mandelc, S., Turk, B., Štajner, N., Jakše, J., Javornik, B. (2015). Different gene expressions of resistant and susceptible hop cultivars in response to infection with a highly aggressive strain of Verticillium albo-atrum. Plant Molecular Biology, 33, 689-704. https://doi.org/10.1007/s11105-014-0767-4
Dala-Paula, BM., Custódio, FB., Knupp, EAN., Palmieri, HEL., Silva, JBB., Glória, MBA. (2018) . Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environmental Pollution, 242, 383-389. https://doi.org/10.1016/j.envpol.2018.04.101
Dias, MC., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonçalves, B., Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35(4), 1281-1289. https://doi.org/10.1007/s11738-012-1167-8
Fang, X., Wang, L., Deng, X., Wang, P., Ma, Q., Nian, H., Wang, Y., Yang, C. (2016). Genome-wide characterization of soybean P 1B -ATPases gene family provides functional implications in cadmium responses. BMC Genomics, 17,1-10. https://doi.org/10.1186/s12864-016-2730-2
Faria, JMS., Pinto, AP., Teixeira, D., Brito, I., Carvalho, M. (2022). Diversity of native arbuscular mycorrhiza extraradical mycelium influences antioxidant enzyme activity in wheat grown under Mn toxicity. Bulletin of Environmental Contamination and Toxicology, 108, 451–456. https://doi.org/10.1007/s00128-021-03240-5
Gomes, MP. (2013). Cadmium effects on mineral nutrition of the Cd-hyperaccumulator Pfaffia glomerata. Biologia, 68(2), 223-230. https://doi.org/10.2478/s11756-013-0005-9
Guerinot, M. (2000). The ZIP family of transporters. BBA, 1465, 190-198. https://doi.org/10.1016/S0005-2736(00)00138-3
Hasan, MK., Cheng, Y., Kanwar, MK., Chu, XY., Ahammed, GJ., Qi, ZY. (2017). Responses of plant proteins to heavy metal stress. A review. Frontiers in Plant Science, 8. 1492. https://doi.org/10.3389/fpls.2017.01492
Hassan, SA., Hayat, S., Ali, B., Ahmad, A. (2008). 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environmental Pollution, 151, 60–66. https://doi.org/10.1016/j.envpol.2007.03.006
He, L., Su, R., Chen, Y.,…, Zhu, H. 2022). Integration of manganese accumulation, subcellular distribution, chemical forms, and physiological responses to understand manganese tolerance in Macleaya cordata. Environmental Science and Pollution Research, 29, 39017–39026. https://doi.org/10.1007/s11356-022-19562-8
Hoagland, D.R., Snyder, W.C. (1933). Nutrition of strawberry plant under controlled conditions. (a) Effects of deficiencies of boron and certain other elements, (b) susceptibility to injury from sodium salts. The Journal of the American Society for Horticultural Science, 30, 288–294.
Irfan, M., Ahmad, A., Hayat, S. (2014), Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences, 21(2), 125-131. https://doi.org/10.1016/j.sjbs.2013.08.001
Jibril, S., Hassan, SA., Ishak, F., Megat Wahab, P. (2017). Cadmium toxicity affects phytochemicals and nutrient elements composition of lettuce (Lactuca sativa L.). Advances in Agriculture, 10, 1-7. https://doi.org/10.1155/2017/1236830
Jogawat, A., Yadav, B., Chhaya, Narayan, OP. (2021) Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiologia Plantarum, 173(1), 259-275. https://doi.org/10.1111/ppl.13370
Karcz, W., & Kurtyka, R. (2007). Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments. Biologia Plantarum, 51(4), 713. https://doi.org/10.1007/s10535-007-0147-0
Kaur, H., Hussain, SJ., Kaur, G., Poor, P., Alamri, S., Iqbal R. Khanm M. (2022). Salicylic acid improves nitrogen fixation, growth, yield and antioxidant defence mechanisms in chickpea genotypes under salt stress. Journal of Plant Growth Regulation, 41, 2034–2047. https://doi.org/10.1007/s00344-022-10592-7
Kim, D., Gustin, J., Lahner, B., Persans, M., Baek, D., Yun, DJ., Salt, D. (2004). The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. The Plant Journal, 39, 237-251. https://doi.org/10.1111/j.1365-313X.2004.02126.x
Kisa, D. (2018). The responses of antioxidant system against the heavy metal-induced stress in tomato. Süleyman Demirel University Journal of Natural and Applied Sciences, 22, 105-115. https://doi.org/10.19113/sdufbed.52379
Koroi, SA. (1989). Gel electrophoresis tissue and spectrophotometrscho unter uchungen zomeinfiuss der temperature auf struktur der amylase and peroxidase isoenzyme. Physiological Reviews, 20, 15-23.
Kumar, R., Mishra, RK., Mishra, V., Qidwai, A., Pandey, A., Shukla, SK., Pandey, M., Pathak, A., Dikshit, A. (2016). Chapter 13 - Detoxification and tolerance of heavy metals in plants. In: Ahmad, P.B.T.-P.M.I. (Ed.), Elsevier, pp. 335–359. https://doi.org/10.1016/B978-0-12-803158-2.00013-8
Lee, S., Kim,YY., Lee, Y., An, G. (2007). Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiology, 145(3), 831-842. https://doi.org/10.1104/pp.107.102236
Li, D., Xu, X., Hu, X., Liu, Q., Wang, Z., Zhang, H., Wang, H., Wei, M., Wang, H., Liu, H., Li, C. (2015). Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa. Frontiers in Plant Science, 6, 1149. https://doi.org/10.3389/fpls.2015.01149
Li, FT., Qi, JM., Zhang, G.Y., Lin, LH., Fang, PP., Tao, AF., Xu, JT. (2013). Effect of cadmium stress on the growth, antioxidative enzymes and lipid peroxidation in two Kenaf (Hibiscus cannabinus L.) plant seedlings. Journal of Integrative Agriculture, 12(4), 610-620. https://doi.org/10.1016/S2095-3119(13)60279-8
Linger, P., Ostwald, A., Haensler, J. (2005). Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Plant Biology, 49(4), 567-576. https://doi.org/10.1007/s10535-005-0051-4
Liu, L., Zhang, Q., Hu, L., Tang, J., Xu, L., Yang, X., Yong, JWH., Chen, X. (2012). Legumes can increase cadmium contamination in neighboring crops. PLoS One, 7(8), e42944-e42944. https://doi.org/10.1371/journal.pone.0042944
Long, A., Zhang, J., Yang, LT., Ye, X., Lai, NW., Tan, LL., Lin, D., Chen, LS. (2017). Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of Citrus. Frontiers in Plant Science, 8, 185. https://doi.org/10.3389/fpls.2017.00185
Marques, AP., Moreira, H., Franco, AR., Rangel, AO., Castro, PM. (2013). Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria–Effects on phytoremediation strategies. Chemosphere, 92(1), 74-83. https://doi.org/10.1016/j.chemosphere.2013.02.055
Mills, RF. (2012). HvHMA2, a P1B-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One, 7(8), e42640. https://doi.org/10.1371/journal.pone.0042640
Mohanty, JK., Jha, UC., Dixit, GP., Parida, SK. (2022). Harnessing the hidden allelic diversity of wild Cicer to accelerate genomics-assisted chickpea crop improvement. Molecular Biology Reports, 49, 5697–5715. https://doi.org/10.1007/s11033-022-07613-9
Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., Vavasseur, A., Richaud, P. (2009). AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology, 149(2), 894-904. https://doi.org/10.1104/pp.108.130294
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiolology, 22, 867–880.
Page, V., Feller, U. (2005). Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Annals of Botany, 96(3), 425-434. https://doi.org/10.1093/aob/mci189
Pence, N., Larsen, P., Ebbs, S., Letham, D., Lasat, M., Garvin, D., Eide, D., Kochian, L. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences, 97,4956-4960. https://doi.org/10.1073/pnas.97.9.4956
Pereira, G., Molina, S., Lea, P., Azevedo, R. (2002). Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Nutrients in Soil, 239, 123-132. https://doi.org/10.1023/A:1014951524286
Rietra, R., Heinen, M., Dimkpa, C., Bindraban, P. (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in Soil Science and Plant Analysis, 48(16), 1895-1920. https://doi.org/10.1080/00103624.2017.1407429
Santos, R., Schmidt, É., Marthiellen, R., Polo, L., Kreusch, M., Pereira, D., Costa, G., Simioni, C., Chow, F., Ramlov, F. (2014). Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: Physiological responses and ultrastructure features. Ecotoxicology and Environmental Safety, 105, 80-89. https://doi.org/10.1016/j.ecoenv.2014.02.021
Sarwar, N., Malhi, S., Zia, M., Naeem, A., Bibi, S., Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90(6), 925-937. https://doi.org/10.1002/jsfa.3916
Satoh-Nagasawa, N., Mori, M., Nakazawa, N., Kawamoto, T., Nagato, Y., Sakurai, K., Takahashi, H., Watanabe, A., Akagi, H. (2012). Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiology, 53(1), 213-224. https://doi.org/10.1093/pcp/pcr166
Schmidt, T., Bergner, A., Schwede, T. (2014). Modelling three-dimensional protein structures for applications in drug design. Drug Discovery Today, 19, 890-897. https://doi.org/10.1016/j.drudis.2013.10.027
Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351-1365. https://doi.org/10.1093/jexbot/53.372.1351
Schutzendubel, A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R., Godbold, D., Polle, A. (2001). Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiology, 127(3), 887-898. https://doi.org/10.1104/pp.010318
Singh, S., Parihar, P., Singh, R., Singh, V., Prasad, S. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1143. https://doi.org/10.3389/fpls.2015.01143
Socha, A., & Guerinot, M. (2014). Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Frontiers in Plant Science, 5, 106-106. https://doi.org/10.3389/fpls.2014.00106
Sun, J., Shen, Z. (2007). Effects of Cd stress on photosynthetic characteristics and nutrient uptake of cabbages with different Cd-tolerance. Ying Yong Sheng Tai Xue Bao, 18(11), 2605-2610.
Tabarzad, A., Ayoubi, B., Riasat, M., Saed-Moucheshi, A., Pessarakli, M. (2017). Perusing biochemical antioxidant enzymes as selection criteria under drought stress in wheat varieties. Journal of Plant Nutritoin, 40(17), 2413-2420. https://doi.org/10.1080/01904167.2017.1346679
Takahashi, R., Bashir, K., Ishimaru, Y., Nishizawa, N., Nakanishi, H. (2012). The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behavior, 7(12), 1605-1607. https://doi.org/10.4161/psb.22454
Tamura, K., Dudley, J., Nei, M., Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. https://doi.org/10.1093/molbev/msm092
Tang, R., Nkrumah, P., Erskine, P., van der Ent, A. (2022). Polymetallic (zinc and cadmium) hyperaccumulation in the Australian legume Crotalaria novae-hollandiae compared to Crotalaria cunninghamii. Plant Nutrition and Soil, 479, 589–606. https://doi.org/10.1007/s11104-022-05547-6
Thomine, S., Wang, R., Ward, J., Crawford, N., Schroeder, J. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences, 97(9), 4991-4996. https://doi.org/10.1073/pnas.97.9.4991
Tian, P., Feng, Y., Li, C., Zhang, P., Yu, X. (2023) Transcriptional analysis of heavy metal P1B-ATPases (HMAs) elucidates competitive interaction in metal transport between cadmium and mineral elements in rice plants. Environmental Science and Pollution Research, 30, 287-297. https://doi.org/10.1007/s11356-022-22243-1
Tuver, G., Ekinci M., Yildirim, E. (2022). Morphological, physiological and biochemical responses to combined cadmium and drought stress in radish (Raphanus sativus L.). Rendiconti Lincei. Scienze Fisiche e Natural, 33,419-429. https://doi.org/10.1007/s12210-022-01062-z
Ulusu, Y., Öztürk, L., Elmastaş, M. (2017). Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russian Journal of Plant Physiology, 64(6), 883-888. https://doi.org/10.1134/S1021443717060139
Vijendra, P., Huchappa, K., Lingappa, R., Basappa, G., Jayanna, S., Kumar, V. (2016). Physiological and biochemical changes in moth bean (Vigna aconitifolia L.) under cadmium stress. Journal of Botany, 10, 1-13. https://doi.org/10.1155/2016/6403938
Zhang, L., Wu, M., Teng, Y., Jia, S., Yu, D., Wei, T., Chen, C., Song, W. (2019). Overexpression of the glutathione peroxidase 5 (RcGPX5) gene from Rhodiola crenulata increases drought tolerance in Salvia miltiorrhiza. Frontiers in Plant Science, 9, (1950). https://doi.org/10.3389/fpls.2018.01950
Zhou, Z., Wei, C., Liu, H., Qiujuan, J., Gezi, L., Jingjing, Z., …, Yang, S. (2022). Exogenous ascorbic acid application alleviates cadmium toxicity in seedlings of two wheat (Triticum aestivum L.) varieties by reducing cadmium uptake and enhancing antioxidative capacity. Environmental Science and Pollution Research, 29, 21739–21750. https://doi.org/10.1007/s11356-021-17371-z
Zulfiqar, U., Ayub, A., Hussain, S., Waraich, E., El-Esawi, M., Ishfaq, M., Ahmad, M., Ali, N., Faisal Maqsood, M. (2022). Cadmium Toxicity in Plants: Recent Progress on Morpho-physiological Effects and Remediation Strategies. Journal of Soil Science and Plant Nutrition, 22, 212–269. https://doi.org/10.1007/s42729-021-00645-3
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Maryam KOLAHI, Elham Mohajel KAZEMI, Milad YAZDI, Mina KAZEMIAN, Andre GOLDSON-BARNABY
This work is licensed under a Creative Commons Attribution 4.0 International License.