Identification of metal tolerance proteins (MTP) and their gene expression under drought stress in potato (Solanum tuberosum L.)
DOI:
https://doi.org/10.14720/aas.2024.120.2.12559Keywords:
biological processes, transporter, metal tolerance proteins, S. tuberosum, gene expressionAbstract
Metal tolerance proteins (MTPs) are as metal efflux transporters, existing extensively at all plant sections and play significant roles in regulation of the metal levels in biological processes. In the current study, phylogenetic relationships, gene structures, conserved motifs, and StMTP domains were analyzed. Here, 12 MTP genes in S. tuberosum were detected and categorized in three major clusters namely Fe/Zn-MTP, Zn-MTP, and Mn-MTP and seven groups (1, 5, 6, 7, 8, 9, and 11) according to phylogenetic relationships. Based on in silico and qPCR analysis, all of StMTPs included a cation diffusion facilitator (CDF) domains and the putative Mn-MTP harbored the ZT-dimer. An evolutionary analysis indicated that StMTP genes had undergone gene duplication leading to gene loss and gene expansion events. Analysis of transcription factor binding sites (TFBS) and microRNA in promoter region and coding sequence of StMTP genes revealed the presence of 5312 putative TFBS and 13 StmiRNAs. The analysis of promoter regions of StMTP genes possess various frequencies of TFBS, illustrating various responses in different growth and developmental stages as well as under abiotic stress. Expression profile analysis revealed that the StMTP9 were up-regulated in leaves and stem, while, StMTP8 up-regulated in leaves. Both genes down-regulated in tubers, roots as well as under drought stress. These results will provide a better insight for functional characterization of StMTP genes and can be helpful to elucidate the biological structure of their genes in potato.
References
Arrivault, S., Senger, T., & Krämer, U. (2006). The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. The Plant Journal, 46(5), 861-879. https://doi.org/10.1111/j.1365-313X.2006.02746.x
Bailey TL, B., & BUSKE, F. (2009). MEMESUITE: tools for motif discovery and searching. Nucleic Acids Research, 37, W202rW208. https://doi.org/10.1093/nar/gkp335
Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215-233. https://doi.org/10.1016/j.cell.2009.01.002
Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., ... & Bateman, A. (2016). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 44(D1), D279-D285. https://doi.org/10.1093/nar/gkv1344
Chen, Z., Zhu, D., Wu, J., Cheng, Z., Yan, X., Deng, X., & Yan, Y. (2018). Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Scientific Reports, 8(1), 1-17. https://doi.org/10.1038/s41598-018-25959-8
Delhaize, E., Gruber, B. D., Pittman, J. K., White, R. G., Leung, H., Miao, Y., ... & Richardson, A. E. (2007). A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. The Plant Journal, 51(2), 198-210. https://doi.org/10.1111/j.1365-313X.2007.03138.x
Ducic, T., & Polle, A. (2005). Transport and detoxification of manganese and copper in plants. Brazilian Journal of Plant Physiology, 17, 103-112. https://doi.org/10.1590/S1677-04202005000100009
Fujiwara, T., Kawachi, M., Sato, Y., Mori, H., Kutsuna, N., Hasezawa, S., & Maeshima, M. (2015). A high molecular mass zinc transporter MTP 12 forms a functional heteromeric complex with MTP 5 in the Golgi in Arabidopsis thaliana. The FEBS Journal, 282(10), 1965-1979. https://doi.org/10.1111/febs.13252
Gao, Y., Yang, F., Liu, J., Xie, W., Zhang, L., Chen, Z., ... & Yao, Y. (2020). Genome-wide identification of metal tolerance protein genes in Populus trichocarpa and their roles in response to various heavy metal stresses. International Journal of Molecular Sciences, 21(5), 1680. https://doi.org/10.3390/ijms21051680
Hajibarat, Z., & Saidi, A. (2022a). Filamentation temperature-sensitive (FtsH); key player in response to multiple environmental stress conditions and developmental stages in potato. Journal of Plant Growth Regulation, 1, 17. https://doi.org/10.1007/s00344-022-10885-x
Hajibarat, Z., Saidi, A., & Hajibarat, Z. (2022b). Genome-wide identification of 14-3-3 gene family and characterization of their expression in developmental stages of Solanum tuberosum under multiple biotic and abiotic stress conditions. Functional & Integrative Genomics, 22(6), 1377-1390. https://doi.org/10.1007/s10142-022-00895-z
Hall, J. Á. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1-11. https://doi.org/10.1093/jexbot/53.366.1
Hall, J. Á., & Williams, L. E. (2003). Transition metal transporters in plants. Journal of Experimental Botany, 54(393), 2601-2613. https://doi.org/10.1093/jxb/erg303
Jaillon, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., ... & Wincker P.(2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449, 463-467. https://doi.org/10.1038/nature06148
Kwenda, S., Birch, P. R., & Moleleki, L. N. (2016). Genome-wide identification of potato long intergenic noncoding RNAs responsive to Pectobacterium carotovorum subspecies brasiliense infection. BMC Genomics, 17(1), 614. https://doi.org/10.1186/s12864-016-2967-9
Kobae, Y., Uemura, T., Sato, M. H., Ohnishi, M., Mimura, T., Nakagawa, T., & Maeshima, M. (2004). Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant and Cell Physiology, 45(12), 1749-1758. https://doi.org/10.1093/pcp/pci015
Kondhare, K. R., Malankar, N. N., Devani, R. S., & Banerjee, A. K. (2018). Genome-wide transcriptome analysis reveals small RNA profiles involved in early stages of stolon-to-tuber transitions in potato under photoperiodic conditions. BMC Plant Biology, 18(1), 284. https://doi.org/10.1186/s12870-018-1501-4
Kumar, A., Farooqi, M. S., Mishra, D. C., Kumar, S., Rai, A., Chaturvedi, K. K., ... & Sharma, A. (2018). Prediction of miRNA and identification of their relationship network related to late blight disease of potato. MicroRNA, 7(1), 11-19. https://doi.org/10.2174/2211536607666171213123038
Li X, Wu Y, Li B, He W, Yang Y, Yang Y (2018) Genome-wide identification and expression analysis of the cation diffusion facilitator gene family in turnip under diverse metal ion stresses. Frontiers in Genetics, 9,103. https://doi.org/10.3389/fgene.2018.00103
Liu, J., Gao, Y., Tang, Y., Wang, D., Chen, X., Yao, Y., & Guo, Y. (2019). Genome-wide identification, comprehensive gene feature, evolution, and expression analysis of plant metal tolerance proteins in tobacco under heavy metal toxicity. Frontiers in Genetics, 10, 345. https://doi.org/10.3389/fgene.2019.00345
Lu, M., & Fu, D. (2007). Structure of the zinc transporter YiiP. Science, 317, 1746–1748. https://doi.org/10.1126/science.1143748
Menguer, P. K., Farthing, E., Peaston, K. A., Ricachenevsky, F. K., Fett, J. P., & Williams, L. E. (2013). Functional analysis of the rice vacuolar zinc transporter OsMTP1. Journal of Experimental Botany, 64(10), 2871-2883. https://doi.org/10.1093/jxb/ert136
Migocka, M., Małas, K., Maciaszczyk-Dziubinska, E., Papierniak, A., Posyniak, E., & Garbiec, A. (2018). Cucumber metal tolerance protein 7 (CsMTP7) is involved in the accumulation of Fe in mitochondria under Fe excess. The Plant Journal. 95,988–1003. https://doi.org/10.1111/tpj.14006
Migocka, M., Papierniak, A., Maciaszczyk-Dziubińska, E., Poździk, P., Posyniak, E., Garbiec, A., & Filleur, S. (2014).Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana. Journal of Experimental Botnay, 65,5367–5384. https://doi.org/10.1093/jxb/eru295
Migocka, M., Papierniak, A., Kosieradzka, A., Posyniak, E., Maciaszczyk‐Dziubinska, E., Biskup, R., ... & Marchewka, T. (2015).Cucumber metal tolerance protein CsMTP9 is a plasma membrane H+-coupled antiporter involved in the Mn2+ andCd2+ efflux from root cells. The Plant Journal, 84,1045–1058. https://doi.org/10.1111/tpj.13056
Montanini, B., Blaudez, D., Jeandroz, S., Sanders, D., & Chalot, M. (2007). Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics, 8(1), 107. https://doi.org/10.1186/1471-2164-8-107
Nies, Dietrich H., & Simon Silver. (1995). “Ion efflux systems involved in bacterial metal resistances.” Journal of Industrial Microbiology, 14, 186-199. https://doi.org/10.1007/BF01569902
Saidi, A., & Hajibarat, Z. (2019). Characterization of cis-elements in hormonal stress-responsive genes in Oryza sativa. Asia-Pacific Journal Molecular Biology and Biotechnology, 27(1), 95-102. https://doi.org/10.35118/apjmbb.2019.027.1.10
Saidi, A., Hajibarat, Z., & Hajibarat, Z. (2020a). Identification of responsive genes and analysis of genes with bacterial-inducible cis-regulatory elements in the promoter regions in Oryza sativa L. Acta agriculture Slovenica, 116(1), 115-123. https://doi.org/10.14720/aas.2020.116.1.1035
Saidi, A., Hajibarat, Z., & Hajibarat, Z. (2020b). Transcriptome analysis of Phytophthora infestans and Colletotrichum coccodes in tomato to reveal resistance mechanisms. Asia-Pacific Journal Molecular Biology and Biotechnology, 28, 39-51. https://doi.org/10.35118/apjmbb.2020.028.1.05
Sasaki, A., Yamaji, N., & Ma, J. F. (2016). Transporters involved in mineral nutrient uptake in rice. Journal of Experimental Botany, 67(12), 3645-3653. https://doi.org/10.1093/jxb/erw060
Shirazi, Z., Abedi, A., Kordrostami, M., Burritt, D. J., & Hossain, M. A. (2019). Genome-wide identification and characterization of the metal tolerance protein (MTP) family in grape (Vitis vinifera L.). 3 Biotech, 9(5), 199. https://doi.org/10.1007/s13205-019-1728-2
Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W. R., & Bäurle, I. (2014). Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell, 26(4), 1792-1807. https://doi.org/10.1105/tpc.114.123851
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. https://doi.org/10.1093/molbev/mst197
Vatansever, R., Filiz, E., and Froglu, S. (2017). Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): insights into metal homeostasis and biofortification. Biometals, 30, 217–235. https://doi.org/10.1007/s10534-017-9997-x
Wang, Y., Zhang, Y., Zhou, R., Dossa, K., Yu, J., Li, D., ... & You, J. (2018). Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame. PLoS One, 13(7), e0200850. https://doi.org/10.1371/journal.pone.0200850
Wu, H., Chen, C., Du, J., Liu, H., Cui, Y., Zhang, Y., ... & Li, J. (2012). Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiology, 158(2), 790-800. https://doi.org/10.1104/pp.111.190983
Zhang, H., Fen, X. U., Yu, W. U., HU, H. H., & DAI, X. F. (2017). Progress of potato staple food research and industry development in China. Journal of Integrative Agriculture, 16(12), 2924-2932. https://doi.org/10.1016/S2095-3119(17)61736-2
Zhang, Y. C., & Chen, Y. Q. (2013). Long noncoding RNAs: new regulators in plant development. Biochemical and Biophysical Research Communications, 436(2), 111-114. https://doi.org/10.1016/j.bbrc.2013.05.086
Yu, C. P., Lin, J. J., & Li, W. H. (2016). Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Scientific Reports, 6, 25164. https://doi.org/10.1038/srep25164
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Zahra HAJIBARAT, Abbas SAIDI

This work is licensed under a Creative Commons Attribution 4.0 International License.