Proteomic studies of drought stress response in Fabaceae

Authors

  • Tanja ZADRAŽNIK Agricultural institute of Slovenia, Hacquetova 17, Ljubljana, Slovenia
  • Jelka ŠUŠTAR-VOZLIČ Agricultural institute of Slovenia, Hacquetova 17, Ljubljana, Slovenia

DOI:

https://doi.org/10.14720/aas.2015.105.1.13

Keywords:

Leguminosae, legumes, varieties, crop yield, drought stress, proteins, drought resistance

Abstract

Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

Alam I., Sharmin S.A., Kim K-H., Yang J.K., Choi M.S., Lee B-H. 2010. Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil, 333: 491-505; DOI: 10.1007/s11104-010- 0365-7 DOI: https://doi.org/10.1007/s11104-010-0365-7

Aranjuelo I., Molero G., Erice G., Avice J.C., Nogués S. 2011. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). Journal of Experimental Botany, 62(1):111- 123; DOI: 10.1093/jxb/erq249 DOI: https://doi.org/10.1093/jxb/erq249

Barkla B.J., Vera-Estrella R., Pantoja O. 2013. Progress and challenges for abiotic stress proteomics of crop plants. Proteomics, 13, 12-13: 1801-1815 DOI: https://doi.org/10.1002/pmic.201200401

Bhushan D., Jaiswal DK., Ray D., Basu D., Datta A., Chakraborty S., Chakraborty N. 2011. Dehydrationresponsive reversible and irreversible changes in the extracellular matrix: comparative proteomics of chickpea genotypes with contrasting tolerance. Journal of Proteome Research, 10, 4: 2027-2046; DOI: 10.1021/pr200010f DOI: https://doi.org/10.1021/pr200010f

Bhushan D., Pandey A., Choudhary M.K., Datta A., Chakraborty S., Chakraborty N. 2007. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Molecular & Cellular Proteomics, 6, 11: 1868-1884; DOI: 10.1074/mcp.M700015-MCP200 DOI: https://doi.org/10.1074/mcp.M700015-MCP200

Bray E.A. 1993. Molecular responses to water deficit. Plant Physiology, 103, 4: 1035-1040 DOI: https://doi.org/10.1104/pp.103.4.1035

Caruso G., Cavaliere C., Foglia P., Gubbiotti R., Samperi R., Laganà A. 2009. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Science, 177, 6: 570-576; DOI: 10.1016/j.plantsci.2009.08.007 DOI: https://doi.org/10.1016/j.plantsci.2009.08.007

CGIAR Research program on grain legume. 2012. ICRISAT, CIAT, ICARDA, IITA: 236 str. http://www.icrisat.org/crp/CRP3.5_Grain_Legumes _15Aug12.pdf (september, 2014)

Corthals G.L., Rose K. 2007. Quantitation in proteomics. V: Proteome research: concepts, technology and application. Wilkins M.R., Appel R.D., Williams K.L., Hochstrasser D.F. (eds.). 2nd ed. Berlin, Springer: 69-93

Gupta B., Saha J., Sengupta A., Gupta K. 2013. Plant abiotic stress: ‘omics’ approach. Journal of Plant Biochemistry & Physiology, 1: e108. doi:10.4172/2329- DOI: https://doi.org/10.4172/2329-9029.1000e108

Hajheidari M., Abdollahian-Noghabi M., Askari H., Heidari M., Sadeghian S.Y., Ober E.S., Salekdeh G.H. 2005. Proteome analysis of sugar beet leaves under drought stress. Proteomics, 5: 950-960; DOI: 10.1002/pmic.200401101 DOI: https://doi.org/10.1002/pmic.200401101

Hossain Z., Khatoon A., Komatsu S. 2013. Soybean proteomics for unraveling abiotic stress response mechanism. Journal of Proteome Research, 12, 11: 4670-4684; DOI: 10.1021/pr400604b DOI: https://doi.org/10.1021/pr400604b

Irar S., González E.M., Arrese-Igor C., Marino D. 2014. A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants. Physiologia Plantarum, 152, 4: 634-645; DOI: 10.1111/ppl.12214 DOI: https://doi.org/10.1111/ppl.12214

Jaiswal D.K., Mishra P., Subba P., Rathi D., Chakraborty S., Chakraborty N. 2014. Membraneassociated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling. Scientific Reports, 4: 4177; DOI: 10.1038/srep04177 DOI: https://doi.org/10.1038/srep04177

Jorrín-Novo J.V., Maldonado A.M., Echevarría-Zomeño S., Valledor L., Castillejo M.A., Curto M., Valero J., Sghaier B., Donoso G., Redondo I. 2009. Plant proteomics update (2007-2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 72, 3: 285-314; DOI: 10.1016/j.jprot.2009.01.026 DOI: https://doi.org/10.1016/j.jprot.2009.01.026

Kajfež-Bogataj L. 2005. Podnebne spremembe in ranljivost kmetijstva. Acta agriculturae Slovenica, 85, 1: 25-40

Kocjan Ačko D., Tolar Š., Šantavec I. 2005. Stročnice v kolobarju slovenskih ekoloških kmetij. Acta agriculturae Slovenica, 85, 1: 125 – 134

Kosová K., Vítámvás P., Prásil I.T., Renaut J. 2011. Plant proteome changes under abiotic stresscontribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 74: 1301-1322; DOI: 10.1016/j.jprot.2011.02.006 DOI: https://doi.org/10.1016/j.jprot.2011.02.006

Kottapalli K.R., Rakwal R., Shibato J., Burow G., Tissue D., Burke J., Puppala N., Burow M., Payton P. 2009. Physiology and proteomics of the waterdeficit stress response in three contrasting peanut genotypes. Plant, Cell & Environment, 32: 380- 407; DOI: 10.1111/j.1365-3040.2009.01933.x DOI: https://doi.org/10.1111/j.1365-3040.2009.01933.x

Kottapalli K.R., Zabet-Moghaddam M., Rowland D., Faircloth W., Mirzaei M., Haynes P.A., Payton P. 2013. Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed. Journal of Proteome Research, 12, 11: 5048-5057; DOI: 10.1021/pr400936d DOI: https://doi.org/10.1021/pr400936d

Larrainzar E., Wienkoop S., Scherling C., Kempa S., Ladrera R., Arrese-Igor C., Weckwerth W., González EM. 2009. Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery. Molecular Plant-Microbe Interactions, 22: 1565-1576; DOI: 10.1094/MPMI- 22-12-1565 DOI: https://doi.org/10.1094/MPMI-22-12-1565

Larrainzar E., Wienkoop S., Weckwerth W., Ladrera R., Arrese-Igor C., González E. 2007. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiology, 144: 1495-1507; DOI: 10.1104/pp.107.101618 DOI: https://doi.org/10.1104/pp.107.101618

Lei Z., Nagaraj S., Watson B., Summer L. 2007. Proteomics of Medicago truncatula. V: Plant proteomics. Šamaj J., Thelen J. (eds.). Berlin, Springer: 121-136 DOI: https://doi.org/10.1007/978-3-540-72617-3_9

Magyar-Tábori K., Mendler-Drienyovszki N., Dobránszki J. 2011. Models and tools for studying drought stress responses in peas. OMICS, 15, 12: 829-838; DOI: 10.1089/omi.2011.0090 DOI: https://doi.org/10.1089/omi.2011.0090

Miklas P.N., Kelly J.D., Beebe S.E., Blair M.W. 2006. Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica, 47: 105-131; DOI: 10.1007/s10681-006-4600-5 DOI: https://doi.org/10.1007/s10681-006-4600-5

Mohammadi P.P., Moieni A., Hiraga S., Komatsu S. 2012. Organ-specific proteomic analysis of drought-stressed soybean seedlings. Journal of Proteomics, 75, 6: 1906-1923; DOI: 10.1016/j.jprot.2011.12.041 DOI: https://doi.org/10.1016/j.jprot.2011.12.041

Muneer S., Ahmad J., Bashir H., Qureshi M.I. 2012. Proteomics of nitrogen fixing nodules under various environmental stresses. Plant Omics Journal, 5, 2: 167-176 Nouri MZ., Komatsu S. 2010. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. Proteomics, 10, 10: 1930- 1945; DOI: 10.1002/pmic.200900632 DOI: https://doi.org/10.1002/pmic.200900632

Pandey A., Chakraborty S., Datta A., Chakraborty N. 2008. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Molecular & Cellular Proteomics, 7: 88-107; DOI: 10.1074/mcp.M700314-MCP200 DOI: https://doi.org/10.1074/mcp.M700314-MCP200

Popelka J.C.,Nancy Terryn N., Higgins T.J.V. 2004. Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Science, 167, 2: 195-206; DOI: 10.1016/j.plantsci.2004.03.027 DOI: https://doi.org/10.1016/j.plantsci.2004.03.027

Popis vrtnarstva. 2000. Kmetijstvo in ribištvo. Ljubljana, Statistični Urad Republike Slovenije: 56 str. http://www.stat.si/doc/pub/rr-765-01.pdf (september, 2014)

Ramachandra Reddy A., Chaitanya K.V., Vivekanandan M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161: 1189-1202; DOI: 10.1016/j.jplph.2004.01.013 DOI: https://doi.org/10.1016/j.jplph.2004.01.013

Reddy D.S., Bhatnagar-Mathur P., Vadez V., Sharma K.K. 2012. Grain legumes (soybean, chickpea, and peanut): omics approaches to enhance abiotic stress tolerance. V: Improving crop resistance to abiotic stress, volume 1 & Volume 2, eds N. Tuteja, S. S. Gill, A. F. Tiburcio and R. Tuteja, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, str: 993-1030 doi: 10.1002/9783527632930.ch39; DOI: 10.1002/9783527632930.ch39

Reinders J., Sickmann A. 2007. Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation. Biomolecular Engineering, 24, 2: 169-177; DOI: 10.1016/j.bioeng.2007.03.002 DOI: https://doi.org/10.1016/j.bioeng.2007.03.002

Salekdeh G.H., Siopongco J., Wade L.J. Ghareyazie B., Bennett J. 2002a. A proteomic approach to analyzing drought- and salt-responiveness in rice. Field Crops Research, 76: 199-219; DOI: 10.1016/S0378-4290(02)00040-0 DOI: https://doi.org/10.1016/S0378-4290(02)00040-0

Salekdeh G.H., Siopongco J., Wade L.J., Ghareyazie B., Bennett J. 2002b. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2: 1131-1145; DOI: 10.1002/1615- 9861(200209)2:9<1131::AIDPROT1131> 3.0.CO;2-1 DOI: https://doi.org/10.1002/1615-9861(200209)2:9<1131::AID-PROT1131>3.0.CO;2-1

Sengupta D., Kannan M., Reddy AR. 2011. A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta, 233, 6: 1111-1127; DOI: 10.1007/s00425-011-1365-4 DOI: https://doi.org/10.1007/s00425-011-1365-4

Sengupta D., Reddy AR. 2011. Water deficit as a regulatory switch for legume root responses. Plant Signaling & Behavior, 6, 6: 914-917; DOI: 10.4161/psb.6.6.15340 DOI: https://doi.org/10.4161/psb.6.6.15340

Subba P., Kumar R., Gayali S., Shekhar S., Parveen S., Pandey A., Datta A., Chakraborty S., Chakraborty N. 2013. Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics, 13, 12-13: 1973-1992 DOI: https://doi.org/10.1002/pmic.201200380

Swanson S.K., Washburn M.P. 2005. The continuing evolution of shotgun proteomics. Drug Discovery Today, 10, 10: 719-725; DOI: 10.1016/S1359- 6446(05)03450-1 DOI: https://doi.org/10.1016/S1359-6446(05)03450-1

Taylor N.L., Heazlewood J.L., Day D.A., Millar A.H. 2005. Differential impact of environmental stresses on the pea mitochondrial proteome. Molecular & Cellular Proteomics, 4, 8: 1122-1133; DOI: 10.1074/mcp.M400210-MCP200 DOI: https://doi.org/10.1074/mcp.M400210-MCP200

Timms J.F., Cramer R. 2008. Difference gel electrophoresis. Proteomics, 8, 23-24: 4886-4897 DOI: https://doi.org/10.1002/pmic.200800298

Vincent D., Lapierre C., Pollet B., Cornic G., Negroni L., Zivy M. 2005. Water deficits affect caffeate Omethyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiology, 137: 949-960; DOI: 10.1104/pp.104.050815 DOI: https://doi.org/10.1104/pp.104.050815

Watson B.S., Asirvatham V.S., Wang L., Summer L.W. 2003. Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiology, 131: 1104-1123; DOI: 10.1104/pp.102.019034 DOI: https://doi.org/10.1104/pp.102.019034

Weckwerth W. 2008. Integration of metabolomics and proteomics in molecular plant physiology-coping with the complexity by data-dimensionality reduction. Physiologia Plantarum, 132, 2: 176-189; DOI: 10.1111/j.1399-3054.2007.01011.x DOI: https://doi.org/10.1111/j.1399-3054.2007.01011.x

Yamaguchi M., Valliyodan B., Zhang J., Lenoble M., Yu O., Rogers E., Nguyen H., Sharp R. 2010. Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolismand control of free iron in the elongation zone. Plant, Cell and Environment, 33: 223–243; DOI: 10.1111/j.1365-3040.2009.02073.x DOI: https://doi.org/10.1111/j.1365-3040.2009.02073.x

Yang Z.B., Eticha D., Führs H., Heintz D., Ayoub D., Van Dorsselaer A., Schlingmann B., Rao I.M., Braun H.P., Horst W.J. 2013. Proteomic and phosphoproteomic analysis of polyethylene glycolinduced osmotic stress in root tips of common bean (Phaseolus vulgaris L.). Journal of Experimental Botany, 64, 18: 5569-5586; DOI: 10.1093/jxb/ert328 DOI: https://doi.org/10.1093/jxb/ert328

Zadražnik T., Hollung K., Egge-Jacobsen W., Meglič V., Šuštar-Vozlič J. 2013. Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). Journal of Proteomics, 78: 254-272; DOI: 10.1016/j.jprot.2012.09.021 DOI: https://doi.org/10.1016/j.jprot.2012.09.021

Zhang D., Ye F., Gao L., Liu X., Zhao X., Che Y., Wang H., Wang L., Wu J., Song D., Liu W., Xu H., Jiang B., Zhang W., Wang J., Lee P. 2009. Proteomics, pathway array and signaling networkbased medicine in cancer. Cell Division, 4, 1: 20, doi: 10.1186/1747-1028-4-20: 16 str. DOI: https://doi.org/10.1186/1747-1028-4-20

Published

26. 11. 2015

Issue

Section

Agronomy section

How to Cite

ZADRAŽNIK, T., & ŠUŠTAR-VOZLIČ, J. (2015). Proteomic studies of drought stress response in Fabaceae. Acta Agriculturae Slovenica, 105(1), 125–134. https://doi.org/10.14720/aas.2015.105.1.13

Most read articles by the same author(s)