Simulation of herbage yield and growth components of Cock’s foot (Dactylis glomerata L.) in Jablje using the calibrated LINGRA-N model

Authors

  • Tjaša POGAČAR University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
  • Lučka KAJFEŽ-BOGATAJ University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia

DOI:

https://doi.org/10.14720/aas.2015.105.2.11

Keywords:

agrometeorology, Dactylis glomerata, grasses, herbage crops, crop yield, drought, growth, simulation models, meteorological factors

Abstract

In the study the previously calibrated LINGRA-N model was used for a long term simulation (1964–2013) of the herbage  dry matter yield (GRASS) and growth analysis of Cock’s foot (Dactylis glomerata L.) in Jablje. Changes in the yearly  GRASS variability are reflected in the appearance of outliers in  the second half of the study period. The biggest reductions in GRASS are seen in the years 1992, 1993 and 2003. These are  the driest years according to meteorological variables (high  maximum and minimum air temp eratures, low precipitation)  and also according to the simulations, with the lowest  reduction factor for crop growth due to drought. The potential  yield (YIELD) is not linearly dependent on meteorological  variables. Some growth compone nts were compared on a daily  basis in a dry year (1993) and an average year (1994). In 1993, for instance, 53 % of photosynth etically active radiation was  intercepted, against 75 % in  1994. Seasonal development of  the actual soil moisture content was linked to the development  of the leaf area index and consequently to the mass of green  leaves, to the roots mass, to the mass of dead leaves and to  GRASS. The results highlight the need for further research, on  field and with simulations. As re gards the latter, we have to  keep in mind that they inevitably involve various  uncertainties.   

References

ARSO. 2014. Slovenian Environment Agency (http://www.arso.gov.si/): Climatological data - database output

Angulo C., Rötter R., Lock R., Enders A., Fronzek S., Ewert F. 2013. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology, 170: 32-46, doi: 10.1016/j.agrformet.2012.11.017

Barrett P.D., Laidlaw A.S., Mayne C.S. 2005. GrazeGro: a European herbage growth model to predict pasture production in perennial ryegrass swards for decision support. European Journal of Agronomy, 23: 37-56, doi: 10.1016/j.eja.2004.09.006

Bonesmo H., Belanger G. 2002. Timothy yield and nutritive value by the CATIMO model; I. Growth and nitrogen. Agronomy Journal, 94: 337-345, doi: 10.2134/agronj2002.0337

Ceglar A., Kajfež-Bogataj L. 2012. Simulation of maize yield in current and chan ged climatic conditions: addressing modelling uncertainties and the importance of bias correction in climate model simulations. European Journal of Agronomy, 37, 1: 83-95, doi: 10.1016/j.eja.2011.11.005

Čop J. 1992. Sezonska razporeditev rasti zelinja štirih vrst trav avtohtonega izvora v predalpskem območju Slovenije. Master thesis. Ljubljana, University of Ljubljana, Biotechnical Faculty, Department for Agronomy: 82 p.

Dolničar J. 2013. Poznavanje tr avne ruše za gospodarno pridelovanje krme. Glas dežele, junij 2013. http://www.glasdezel e.si/articles/2013/poznavanje- travne-ru%C5%A1e-za-gospodarno-pridelovanje- krme (16. 10. 2013)

KIS. 2014. Agricultural Institute of Slovenia (http://www.kis.si/): herbage yield data of grass monocultures - database output

Laidlaw A.S. 2009. The effect of soil moisture content on leaf extension rate and yield of perennial ryegrass. Irish journal of agricultural and food research, 48: 1-20

Lambert R., Peeters A., Toussaint B. 1999. LAI evolution of a perennial ryegrass crop estimated from the sum of temperatures in spring time. Agricultural and Forest Meteorology, 97: 1-8, doi: 10.1016/S0168-1923(99)00059-3

Lekšan D. 1995. Vpliv vr emena na pridelek različno gnojenega travnika. Graduation thesis. Ljubljana, University of Ljubljana, Biotechnical Faculty, Department for Agronomy: 34 p.

Pogačar T., Ipavec D., Verbič J., Kajfež-Bogataj L. 2015. Calibration of the LINGRA-N model to simulate herbage yield of grass monocultures and permanent grassland in Slovenia. Acta agriculturae Slovenica, 105, 1: 111-123, doi: 10.14720/aas.2015.105.1.12

Prihodnje spremembe podnebja v Sloveniji. 2014. Ljubljana, Ministry of the environment and spatial planning, Slovenian envi ronment agency: 3 p. http://meteo.arso.gov.si/uploads/probase/www/clim ate/PSS/scenariji/podnebni_ scenariji.pdf (21. 5. 2015)

Schaumberger A., Trnka M., Eitzinger J., Formayer H., Bartelme N. 2007. Agrometeorological monitoring of Austrian grasslands using GIS based modeling. Geophysical Research Abstracts, 9, poster: 3 p. http://meetings.copernicus.org/www.cosis.net/abstr acts/EGU2007/10449/EGU2007-J-10449.pdf (20. 1. 2014)

Smit H.J., Metzger M.J., Ewert F. 2008. Spatial distribution of grassland productivity and land use in Europe. Agricultural Systems, 98: 208-219, doi: 10.1016/j.agsy.2008.07.004

Supit I., Van der Goot E. (eds.). 2003. Updated system description of the WOFOST crop growth simulation model as implemented in the CGMS applied by the European Commission. Joint Research Centre of the European Commission, Luxembourg: http://www.treemail.nl/download/treebook7/index.h tm

Sušnik A. 2006. Vodni primanjkljaj v Sloveniji in možni vplivi podnebnih sprememb. Master thesis. Ljubljana, University of Ljubljana, Biotechnical Faculty, Department for Agronomy: 147 p.

Sušnik A., Pogačar T. 2010. Modeliranje vodne bilance travinja kot orodje pri analizi suše v obdobju 1973– 2009. In: Novi izzivi v poljedelstvu 2010. Rogaška Slatina, 2.-3. 12. 2010. Kocjan Ačko D., Čeh B. (eds.). Ljubljana, Slovensko agronomsko društvo: 299-306

Tajnšek A. 2003. Deset let trajnih poskusov IOSDV v Sloveniji, Jable in Rakičan 1993–2003. In: Namen in cilj trajnih poljskih poskusov IOSDV Jable in IOSDV Rakičan. Žalec, 12. 12. 2003. Tajnšek A., Čeh Brežnik B., Kocjan Ačko D. (eds.). Proceedings of the conference, Slovensko agronomsko društvo: 7-24

Tehnološka priporočila za zmanjšanje občutljivosti kmetijske pridelave na sušo: poljedelstvo, travništvo, zelenjadarstvo in hmeljarstvo. 2008. Ljubljana, Ministry of Agriculture, Forestry and Food: 44 p. http://www.arsktrp.gov.si/f ileadmin/arsktrp.gov.si/p ageuploads/Aktualno/Aktualno/2013/Tehnoloska_p riporocila_za_zmanjsanje_obcutljivosti_na_suso.pd f (18. 11. 2013)

Trnka M., Eitzinger J., Gruszczynsk G., Buchgraber K., Resch R., Schaumberger A. 2006. A simple statistical model for predicting herbage production from permanent grassland. Grass and forage science, 61: 253-271, doi: 10.1111/j.1365- 2494.2006.00530.x

Willmott C.J. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63: 1309-1313, doi: 10.1175/1520- 0477(1982)063<1309:SCOTEO>2.0.CO;2

Wolf J. 2006. Grassland data from PASK study and testing of LINGRA in CGMS. ASEMARS Project report no. 2. Wageningen, Alterra: 38 p. http://models.pps.wur.nl/s ites/models.pps.wur.nl/fil es/LINGRA-PASK_report_Wolf-2006.pdf (8. 1. 2010)

Wolf J. 2012. LINGRA-N: Simple generic model for simulation of grass growth under potential, water limited and nitrogen limited conditions. User guide for LINGRA-N. Wageningen, Wageningen University: 65 p. http://www.wageningenur.nl/en/Publication- details.htm?publicationId=publication-way- 343434373232 (28. 3. 2013)

Downloads

Published

26. 11. 2015

Issue

Section

Agronomy section

How to Cite

POGAČAR, T., & KAJFEŽ-BOGATAJ, L. (2015). Simulation of herbage yield and growth components of Cock’s foot (Dactylis glomerata L.) in Jablje using the calibrated LINGRA-N model. Acta Agriculturae Slovenica, 105(2), 279–292. https://doi.org/10.14720/aas.2015.105.2.11

Similar Articles

1-10 of 755

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 > >>