Influence of selenium in drought-stressed wheat plants under greenhouse and field conditions

Authors

  • Roghieh HAJIBOLAND Plant Science Department, University of Tabriz, 51666-14779 Tabriz, Iran
  • Noushin SADEGHZADEH Plant Science Department, University of Tabriz, 51666-14779 Tabriz, Iran
  • Nashmin EBRAHIMI Plant Science Department, University of Tabriz, 51666-14779 Tabriz, Iran
  • Behzad SADEGHZADEH Dryland Agricultural Research Institute (DARI), Maragheh, P.O. Box 119, Iran
  • Seyed Abolgasem MOHAMMADI Faculty of Agriculture, University of Tabriz, 51666-14779 Tabriz, Iran

DOI:

https://doi.org/10.14720/aas.2015.105.2.01

Keywords:

drought stress, drought, photosynthesis, slenium, water supply, wheats, organic compounds, pigments, field experimentation, protected cultivation

Abstract

Effects of selenium (Na2SeO4) was studied in two wheat genotypes under well-watered and drought conditions in greenhouse (15 µg Se L-1) and field (20-60 60 g ha-1) experiments. Application of Se improved dry matter and grain yield under both well-watered and drought conditions. Se increased leaf concentration of pigments and photosynthesis rate under both well-watered and drought conditions. Our results indicated that Se alleviates drought stress via increased photosynthesis rate, protection of leaf photochemical events, accumulation of organic osmolytes and improvement of water use efficiency. Under well-watered condition, Se-mediated growth improvement was associated with higher photosynthesis rate and water use efficiency, greater root length and diameter, and higher leaf water content.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

Ashraf, M. 2010 Inducing drought tolerance in plants: Recent advances. Biotechnol. Adv. 28: 169-183, DOI: 10.1016/j.biotechadv.2009.11.005 DOI: https://doi.org/10.1016/j.biotechadv.2009.11.005

Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207, DOI: 10.1007/BF00018060 DOI: https://doi.org/10.1007/BF00018060

Chalker-Scott. L. 2002. Do anthocyanins function as osmoregulators in leaf tissues? Adv. Bot. Res. 37: 103-106, DOI: 10.1016/S0065-2296(02)37046-0 DOI: https://doi.org/10.1016/S0065-2296(02)37046-0

Chaves, M.M., Flexas, J., Pinheiro, C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103: 551-560.DOI: 10.1093/aob/mcn125 DOI: https://doi.org/10.1093/aob/mcn125

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29: 185-212, DOI: 10.1051/agro:2008021 DOI: https://doi.org/10.1051/agro:2008021

Feng, R., Wei, C., Tu, S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 87: 58-68, DOI: 10.1016/j.envexpbot.2012.09.002 DOI: https://doi.org/10.1016/j.envexpbot.2012.09.002

Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., Tattini, M. 2011. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal. Behav. 6: 709-711, DOI: 10.4161/psb.6.5.15069 DOI: https://doi.org/10.4161/psb.6.5.15069

Giusti, M.M., Wrolstad, R.E. 2001. Characterization and measurement of anthocyanins by UV–Visible spectroscopy. In: Current Protocols in Food Analytical Chemistry. Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Pennere, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P. (eds.). New York, John Wiley: F1.2.1–F1.2.13, DOI: 10.1002/0471142913.faf0102s00 DOI: https://doi.org/10.1002/0471142913

Gowda, V.R.P., Henry, A., Yamauchi, A., Shashidhar, H.E., Serraj, R. 2011. Root biology and genetic improvement for drought avoidance in rice. Field Crops Res. 122: 1–13, DOI: 10.1016/j.fcr.2011.03.001 DOI: https://doi.org/10.1016/j.fcr.2011.03.001

Grayer, R.J. 1989. Flavonoids. In: Methods in Plant Biochemistry, Vol. 1, Plant Phenolics. Dey, P.M., Harborne, J.B. (eds.) London, academic Press: 283- 323. DOI: https://doi.org/10.1016/B978-0-12-461011-8.50014-7

Habibi, G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agric. Slov. 101: 31-39, DOI: 10.2478/acas-2013-0004 DOI: https://doi.org/10.2478/acas-2013-0004

Hajiboland, R. 2012. Effect of micronutrient deficiencies on plant stress responses. In: Abiotic Stress Responses in Plants. Ahmad, P., Prasad, M.N.V. (eds.). New York, Springer: 283-329, DOI: 10.1007/978-1-4614-0634-1_16 DOI: https://doi.org/10.1007/978-1-4614-0634-1_16

Hajiboland, R. 2014. Reactive oxygen species and photosynthesis. In: Oxidative Damage to Plants, Antioxidant Networks and Signaling. Ahmad, P. (ed.). New York, Springer: 1-63, 10.1016/B978-0- 12-799963-0.00001-0 DOI: https://doi.org/10.1016/B978-0-12-799963-0.00001-0

Hajiboland, R., Sadeghzadeh, N. 2014. Effect of selenium supplementation on CO2 and NO3 − assimilation under low and adequate N supply in wheat (Triticum aestivum L.) plants. Photosynthetica, DOI: 10.1007/s11099-014-0058-1. DOI: https://doi.org/10.1007/s11099-014-0058-1

Hajiboland, R., Yang, X.E., Römheld, V. 2003. Effects of bicarbonate and high pH on growth of Znefficient and Zn-inefficient genotypes of rice, wheat and rye. Plant Soil 250: 349-357, DOI: 10.1023/A:1022862125282 DOI: https://doi.org/10.1023/A:1022862125282

Hasanuzzaman, M., Fujita, M. 2011. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol. Trace Element Res. 143: 1758-1776, DOI: 10.1007/s12011-011-8998-9 DOI: https://doi.org/10.1007/s12011-011-8998-9

Ichikawa, H., Ichiyanagi, T., Xu, B., Yoshii, Y., Nakajima, M., Konishi, T. 2001. Antioxidant activity of anthocyanin extract from purple black rice. J. Med. Food 4: 211-218, DOI: 10.1089/10966200152744481 DOI: https://doi.org/10.1089/10966200152744481

Jaiswal, P.C. 2004. Soil, plant and water analysis. New Delhi, Kalyani Publishers.

Krall, J.P., Edwards, G.E. 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plant. 86: 180-187, DOI: 10.1111/j.1399-3054.1992.tb01328.x DOI: https://doi.org/10.1111/j.1399-3054.1992.tb01328.x

Krasensky, J., Jonak, C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63: 1593-1608, DOI: 10.1093/jxb/err460 DOI: https://doi.org/10.1093/jxb/err460

Lee, B.R., Jin, Y.L., Jung, W.J., Avice, J.C., Morvan- Bertrand, A., Ourrt, A., Park, C.W., Kim, T.H. 2008. Water deficit accumulates sugars by starch degradation-not by de novo synthesis-in white clover leaves (Trifolium repens). Physiol. Plant. 134: 403-411, DOI: 10.1111/j.1399- 3054.2008.01156.x DOI: https://doi.org/10.1111/j.1399-3054.2008.01156.x

Liang, Y.C., Sun, W., Zhu, Y-G., Christie, P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut 147: 422-428, DOI: 10.1016/j.envpol.2006.06.008 DOI: https://doi.org/10.1016/j.envpol.2006.06.008

Lichtenthaler, H.K., Wellburn, A.R. 1985. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol. Soc. Trans. 11: 591-592, DOI: 10.1042/bst0110591 DOI: https://doi.org/10.1042/bst0110591

Lutts, S., Majerus, V., Kinet, J.M. 1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105: 450-458, DOI: 10.1034/j.1399- 3054.1999.105309.x DOI: https://doi.org/10.1034/j.1399-3054.1999.105309.x

Lyons, G., Stangoulis, J., Graham, R. 2003. Highselenium wheat: biofortification for better health. Nutr. Res. Rev. 16: 45-60, DOI: 10.1079/NRR200255 DOI: https://doi.org/10.1079/NRR200255

Mitra, J. 2001. Genetics and genetic improvement of drought resistance in crop plants. Curr. Sci. 80: 758-763

Müller, P., Li, X.P., Niyogi, K.K. 2001. Nonphotochemical quenching. A response to excess light energy. Plant Physiol. 125: 1558-1566, DOI: 10.1104/pp.125.4.1558 DOI: https://doi.org/10.1104/pp.125.4.1558

Niedzwiedz-Siegien, I., Bogatek-Leszczynska, R., Come, D., Corbineau, F. 2004. Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Sci. 167: 879-888, DOI: 10.1016/j.plantsci.2004.05.042 DOI: https://doi.org/10.1016/j.plantsci.2004.05.042

Noctor, G., Mhamdi, A., Foyer, C.H.A. 2014. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 164: 1636-1648, DOI: 10.1104/pp.113.233478 DOI: https://doi.org/10.1104/pp.113.233478

Owusu-Sekyere, A., Kontturi, J., Hajiboland, R., Rahmat, S., Aliasgharzad, N., Hartikainen, H., Seppänen, M.M. 2013. Influence of selenium (Se) on carbohydrate metabolism, nodulation and growth in alfalfa (Medicago sativa L.). Plant Soil 373: 541-552, DOI: 10.1007/s11104-013-1815-9 DOI: https://doi.org/10.1007/s11104-013-1815-9

Pennanen, A., Xue, T., Hartikainen, H. 2002. Protective role of selenium in plant subjected to severe UV irradiation stress. J. Appl. Bot. 76: 66-76

Sperry, J.S. 2000. Hydraulic constraints on plant gas exchange. Agric. Forest Meteorol. 104: 13-23, DOI: 10.1016/S0168-1923(00)00144-1 DOI: https://doi.org/10.1016/S0168-1923(00)00144-1

Tardieu, F., Parent, B., Caldeira, C.F., Welcker, C. 2014. Genetic and physiological controls of growth under water deficit. Plant Physiol. DOI:10.1104/pp.113.233353. DOI: https://doi.org/10.1104/pp.113.233353

Tennant, D. 1975. A test of modified line intersect method of estimating root length. J. Ecol. 63: 995- 1001, DOI: 10.2307/2258617 DOI: https://doi.org/10.2307/2258617

Turakainen, M., Hartikainen, H., Seppänen, M.M. 2004. Effects of selenium treatments on patato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J. Agric. Food Chem. 52: 5378- 5382, DOI: 10.1021/jf040077x DOI: https://doi.org/10.1021/jf040077x

Valliyodan, B., Nguyen, H.T. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 9: 1-7, DOI: 10.1016/j.pbi.2006.01.019 DOI: https://doi.org/10.1016/j.pbi.2006.01.019

Verbruggen, N., Hermans, C. 2008. Proline accumulation in plants: a review. Amino Acids 35: 753-759, DOI: 10.1007/s00726-008-0061-6 DOI: https://doi.org/10.1007/s00726-008-0061-6

Wahid, A., Ghazanfar, A. 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant Physiol. 163: 723-730, DOI: 10.1016/j.jplph.2005.07.007 DOI: https://doi.org/10.1016/j.jplph.2005.07.007

Wang, C.Q. 2011. Water-stress mitigation by selenium in Trifolium repens L. J. Plant Nutr. Soil Sci. 174: 276-282, DOI: 10.1002/jpln.200900011 DOI: https://doi.org/10.1002/jpln.200900011

Wang, Y.D., Wang, X., Wong, Y.S. 2012. Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. J. Proteomics 75: 1849-1866, DOI: 10.1016/j.jprot.2011.12.030 DOI: https://doi.org/10.1016/j.jprot.2011.12.030

Yao, X.Q., Chu, J.Z., Wang, G.Y. 2009. Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiol. Plant. 31: 1031-1036., DOI: 10.1007/s11738-009-0322-3 DOI: https://doi.org/10.1007/s11738-009-0322-3

Yemm, E.W., Cocking, E.C. 1955. The determination of amino acids with ninhydrin. Analyst 80: 209-213, DOI: 10.1039/an9558000209 DOI: https://doi.org/10.1039/an9558000209

Yemm, E.W., Willism, A.J. 1954. The estimation of carbohydrates extracts by anthrone. Biochem. J. 57: 508-514, DOI: 10.1042/bj0570508 DOI: https://doi.org/10.1042/bj0570508

Zhou, S., Duursma, R.A., Medlyn, B.E., Kelly, J.W.G., Prentice, I.C. 2013 How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. Forest Meteorol. 182/183: 204-114, DOI: 10.1016/j.agrformet.2013.05.009 DOI: https://doi.org/10.1016/j.agrformet.2013.05.009

Downloads

Published

26. 11. 2015

Issue

Section

Agronomy section

How to Cite

HAJIBOLAND, R., SADEGHZADEH, N., EBRAHIMI, N., SADEGHZADEH, B., & MOHAMMADI, S. A. (2015). Influence of selenium in drought-stressed wheat plants under greenhouse and field conditions. Acta Agriculturae Slovenica, 105(2), 175–191. https://doi.org/10.14720/aas.2015.105.2.01

Most read articles by the same author(s)