Does paternal sterility impact on progeny germination and survivorship, case study in strawberries
DOI:
https://doi.org/10.14720/aas.2014.103.2.13Keywords:
strawberries, fragaria, infertility, male infertility, reproductive disorders, progeny, ancestry, germination, survival, viability, reproductive performanceAbstract
Studies on the parental role on progeny performance have mostly focused on the maternal parent, while less attention was given to the paternal parent. This study investigated the impact of paternal pollen sterility (ranging from 3.1 – to 77.2%) on F1 seed germination and progeny survivorship in Fragaria (strawberry, Rosaceae) using controlled crosses. In crosses within F. vesca ssp. vesca the paternal pollen sterility was not correlated with F1 seed germination (N = 14, p > 0.074) and progeny survivorship (N = 14, p > 0. 0.710). Paternal sterility in crosses between F. vesca ssp. vesca and F. vesca ssp. monophylla did not affect on F1 seed germination (N = 7, p > 0.295) and progeny survivorship (N = 6, p > 0.812). Similarly, no correlation was found between father pollen sterility and F1 seed germination (N = 6, p > 0.924) and progeny survivorship (N = 6, p > 0.215) in crosses between F. vesca ssp. americana and F. vesca ssp. vesca. Furthermore, crossing different maternal plants by pollen of the same paternal plant in all three cross types produced progeny with variable levels of F1 seed germination and survivorship. These results indicate the crucial role of maternal plant on progeny performance and support the general idea of the importance of maternal rather than paternal parent on progeny performance.References
Archibald J.K., Mort M.E., Crawford D.J., Kelly J.K. 2005. Life history affects the evolution of reproductive isolation among species of Coreopsis (Asteraceae). Evolution, 59: 2362–23 69. DOI: 10.1111/j.0014-3820.2005.tb00946.x DOI: https://doi.org/10.1554/05-247.1
Banuelos M.J., Obeso J.R. 2003. Maternal provisioning, sibling rivalry, and seed mass variability in the dioecious shrub Rhamnus alpinus . Evol. Ecol., 17: 19–31. DOI: 10.1023/A:1022430302689 DOI: https://doi.org/10.1023/A:1022430302689
Bayer M., Nawy T., Giglione C., Galli M., Meinnel T., Lukowitz W. 2009. Paternal control of embryonic patterning in Arabidopsis thaliana. Science, 323: 1485–1488. DOI: 10.1126/science.1167784 DOI: https://doi.org/10.1126/science.1167784
Beaulieu J.M., Moles A.T., Leitch I.J., Bennett M.D., Dickie J.B., Knight C. A. 2007. Correlated evolution of genome size and seed mass. New Phytologist, 173: 422–437. DOI: 10.1111/j.1469- 8137.2006.01919.x DOI: https://doi.org/10.1111/j.1469-8137.2006.01919.x
Bernasconi G. 2003. Seed paternity in flowering plants: an evolutionary perspective. Perspectives in Plant Ecology, Evolution and Systematics, 6: 149–158. DOI: 10.1078/1433-8319-00075 DOI: https://doi.org/10.1078/1433-8319-00075
Davis S.L. 2004. Natural levels of pollination intensity and effects ofpollen loads on offspring quality in females of Thalictrum pubescens (Ranunculaceae). Plant Systematics and Evolution, 244: 45–54. DOI: 10.1007/s00606-003-0034-x DOI: https://doi.org/10.1007/s00606-003-0034-x
Diggle P.K., Abrahamson N.J., Baker R.L., Barnes M.G., Koontz T.L., Lay C.R., Medeiros J.S. 2010. Dynamics of maternal and paternal effects on embryo and seed development in wild radish (Raphanus sativus ). Annals of Botany, 106: 309– 319. DOI: 10.1093/aob/mcq110 DOI: https://doi.org/10.1093/aob/mcq110
Gehring J.L., Delph L.F. 2006. Effects of reduced source-sink ratio on the cost of reproduction in females of Silene latifolia. International Journal of Plant Sciences, 67: 843–851. DOI: 10.1086/503784 DOI: https://doi.org/10.1086/503784
Halpern S.L. 2005. Sources and consequences of seed size variation in Lupinus perennis (Fabaceae): adaptive and non-adaptive hypotheses. American Journal of Botany, 92: 205–213. DOI: 10.3732/ajb.92.2.205 DOI: https://doi.org/10.3732/ajb.92.2.205
Holland J.N., Chamberlain S.A., Waguespack A.M., Kinyo A.S. 2009. Effects of pollen load and donor diversity on seed and fruit mass in the columnarcactus, Pachycereus schottii (Cactaceae). International Journal of Plant Sciences, 170: 467– 475. DOI: 10.1086/597266 DOI: https://doi.org/10.1086/597266
Kay K.M. 2006. Reproductive isolation between two closely related hummingbird pollinated neotropical gingers. Evolution, 60: 538–552 DOI: https://doi.org/10.1111/j.0014-3820.2006.tb01135.x
Leishman M.R., Wright I.J., Moles A.T., Westoby M. 2000. The evolutionary ecology of seed size. In M. Fenner, ed. Seeds: the ecology of regeneration in plant communities. CAB International,Wallingford, UK: 31-57 DOI: https://doi.org/10.1079/9780851994321.0031
Lloyd D.G. 1980. Sexual strategies in plants. I. An hypothesis of serial adjustments of maternal investment during one reproductive session. New Phytologist, 86: 69–79. DOI: 10.1111/j.1469- 8137.1980.tb00780.x DOI: https://doi.org/10.1111/j.1469-8137.1980.tb00780.x
Marshall D.L., Diggle P.K. 2001. Mechanisms of differential pollen donor performance in wild radish, Raphanus sativus (Brassicaceae). American Journal of Botany, 88: 242–257. DOI: 10.2307/2657015 DOI: https://doi.org/10.2307/2657015
Marshall D.L., Avritt J.I., Shaner M., Saunders R.L. 2000. Effects of pollen load size and composition on pollen donor performance in wild radish, Raphanus sativus (Brassicaceae). American Journal of Botany, 87: 1619–1627. DOI: 10.2307/2656738 DOI: https://doi.org/10.2307/2656738
Mitchell R.J. 1997. Effects of pollen quantity on progeny vigour: evidence fr om the desert mustard Lesquerella fendleri. Evolution, 51: 1679–1684. DOI: 10.2307/2411219 DOI: https://doi.org/10.1111/j.1558-5646.1997.tb01490.x
Moyle L.C., Olson M.S., Tiffin P. 2004. Patterns of reproductive isolation in three angiosperm genera. Evolution 58: 1195–1208Nakamura R.R., Stanton M.L. 1989. Embryo growth and seed size in Raphanus sativus : maternal and paternal effects in vivo and in vitro. Evolution, 43: 1435–1443 DOI: https://doi.org/10.1111/j.1558-5646.1989.tb02594.x
Niesenbaum R.A. 1999. The effect of pollen load size and donor diversity on pollen performance, selective abortion, and progeny vigour in Mirabilis jalapa (Nyctaginaceae). American Journal of Botany, 86: 261–268. DOI: 10.2307/2656941 DOI: https://doi.org/10.2307/2656941
Niklas K.J. 1997. The evolutionary biology of plants. The University of Chicago Press, Chicago, pp. 20.
Obeso J.R. 2004.A hierarchic al perspective in allocation to reproduction from whole plant to fruit and seed level. Perspectives in Plant Ecology Evolution and Systematics, 6: 217–225. DOI: 10.1078/1433-8319- 00080 DOI: https://doi.org/10.1078/1433-8319-00080
Raghavan V. 2005. Role of non-zygotic parental genes in embryogenesis and endosperm development in flowering plants. Acta Biologica Cracoviensia, 47: 31–36
Roach D.A., Wulff R.D. 19 87. Maternal effects in plants. Annual Review of Ecology and Systematics, 18: 209-35. DOI: 10.1146/annurev.es.18.110187.001233 DOI: https://doi.org/10.1146/annurev.es.18.110187.001233
Staudt G.1989. The species of Fragaria , their taxonomic and geographical distribution. Acta Horticulturae, 265: 23–33 DOI: https://doi.org/10.17660/ActaHortic.1989.265.1
Staudt G. 2009. Strawberry biogeography, genetics and systematics. Acta Horticulturae, 842: 71–84. DOI: https://doi.org/10.17660/ActaHortic.2009.842.1
Westoby M., Falster D.S., Moles A.T., Vesk P.A., Wright I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33: 125–159. DOI: 10.1146/annurev.ecolsys.33.010802.150452 DOI: https://doi.org/10.1146/annurev.ecolsys.33.010802.150452
Wolfe L.M. 1992. Why does the size of reproductive structures declin e through time in Hydrophyllum appendiculatum (Hydrophyllaceae) developmental constraints vs. resource limitation. American Journal of Botany, 79: 1286–1290. DOI: 10.2307/2445057 DOI: https://doi.org/10.1002/j.1537-2197.1992.tb13733.x