Effect of Se application on photosynthesis, osmolytes and water relations in two durum wheat (Triticum durum L.) genotypes under drought stress

Authors

  • Roghieh HAJIBOLAND Plant Science Department, University of Tabriz, 51666-14779 Tabriz,Iran
  • Noushin SADEGHZADEH Plant Science Department, University of Tabriz, 51666-14779 Tabriz, Iran
  • Behzad SADEGHZADEH Dryland Agricultural Research Institute (DARI), Maragheh, P.O. Box 119, Iran

DOI:

https://doi.org/10.14720/aas.2014.103.2.2

Keywords:

triticum durum, hard wheat, genotypes, photosynthesis, proline, amino acids, drought stress, water use, efficiency, plant water relations, selenium, osmosis, watering

Abstract

Effect of Se (as Na2SeO4 at final concentration of 10 µg l-1) was studied in two durum wheat (Triticum durum L.) genotypes in perlite under drought conditions. Se treatment increased slightly biomass of both genotypes under drought but not under control conditions. Photosynthetic rate was depressed by drought while increased by Se treatments in both genotypes up to 2.3 fold. However, transpirational water loss was also enhanced in Se-treated plants under both well-watered and drought conditions. Se application resulted in higher concentrations of soluble proteins and free α-amino acids under drought conditions, but not proline. Our results indicated that Se application improves some physiological parameters such as photosynthesis, accumulation of osmolyes and water use efficiency but did not change significantly plants biomass or water relation parameters.

References

Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207. DOI: 10.1007/BF00018060 DOI: https://doi.org/10.1007/BF00018060

Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70: 1–9. DOI: 10.1111/j.1751- 1097.1999.tb01944.x DOI: https://doi.org/10.1111/j.1751-1097.1999.tb01944.x

Chaves, M.M., Flexas, J. , Pinheiro, C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103: 551–560. DOI: 10.1093/aob/mcn125 DOI: https://doi.org/10.1093/aob/mcn125

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29: 185–212. DOI: 10.1051/agro:2008021 DOI: https://doi.org/10.1051/agro:2008021

Feng, R., Wei, C., Tu, S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 87: 58–68. DOI: 10.1016/j.envexpbot.2012.09.002 DOI: https://doi.org/10.1016/j.envexpbot.2012.09.002

Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., Tattini, M. 2011. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal. Behav. 6: 709–711. DOI: 10.4161/psb.6.5.15069 DOI: https://doi.org/10.4161/psb.6.5.15069

Germ, M., Stibilj, V. 2007. Selenium and plants. Acta Agric. Slov. 89: 65–71. DOI: 10.2478/v10014-007- 0008-8 DOI: https://doi.org/10.2478/v10014-007-0008-8

Giusti, M.M., Wrolstad, R. E. 2001. Characterization and measurement of anthocyanins by UV–Visible spectroscopy. In: Current Protocols in Food Analytical Chemistry. Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Pennere, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P. (eds.), John Wiley, New York: F1.2.1–F1.2.13. DOI: https://doi.org/10.1002/0471142913.faf0102s00

Grayer, R.J. 1989. Flavonoids. In: Methods in Plant Biochemistry. Vol. 1. Plant Phenolics. Dey, P.M., Harborne, J.B. (eds.). Academic press: 283–323. DOI: https://doi.org/10.1016/B978-0-12-461011-8.50014-7

Habibi, G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agric. Slov. 101: 31–39. DOI: 10.2478/acas-2013-0004 DOI: https://doi.org/10.2478/acas-2013-0004

Hajiboland, R. 2012. Effect of micronutrient deficiencies on plant stre ss responses. In: Abiotic Stress Responses in Plants. Ahmad, P., Prasad, M.N.V. (eds.), Springer: 283–329. DOI: 10.1007/978-1-4614-0634-1_16 DOI: https://doi.org/10.1007/978-1-4614-0634-1_16

Hajiboland, R. 2014. Reactive oxygen species and photosynthesis. In: Oxidative Damage to Plants, Antioxidant Networks and Signaling. Ahmad, P. (ed.) Academic Press: 1–63. DOI: 10.1016/B978-0- 12-799963-0.00001-0 DOI: https://doi.org/10.1016/B978-0-12-799963-0.00001-0

Hajiboland, R., Amjad L. 2007. Does antioxidant capacity of leaves play a ro le in growth response to selenium at different sulf ur nutritional status? Plant Soil Environ. 53: 207–215. DOI: https://doi.org/10.17221/2202-PSE

Hajiboland, R., Keivanfar, N. 2012. Selenium supplementation stimulates vegetative and reproductive growth in canola ( Brassica napus L.) plants. Acta Agric. Slov. 99: 13–19. DOI: 10.2478/v10014-012-0002-7 DOI: https://doi.org/10.2478/v10014-012-0002-7

Hajiboland, R., Sadeghzadeh, N. 2014. Effect of selenium supplementation on CO 2 and NO 3 − assimilation under low and adequate N supply in wheat (Triticum aestivum L.) plants. Photosynthetica In press . DOI: 10.1007/s11099- 014-0058-1

Hajiboland, R., Yang, X.E., Römheld, V. 2003, Effects of bicarbonate and high pH on growth of Zn- efficient and Zn-inefficient genotypes of rice, wheat and rye. Plant Soil 250: 349–357. DOI: 10.1023/A:1022862125282 DOI: https://doi.org/10.1023/A:1022862125282

Hartikainen, H., Xue, T.L., Piironen, V. 2000. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225: 193–200. DOI: 10.1023/A:1026512921026 DOI: https://doi.org/10.1023/A:1026512921026

Hasanuzzaman, M., Fujita, M. 2011. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol. Trace Elem. Res. 143: 1758–1776. DOI: 10.1007/s12011-011-8998-9 DOI: https://doi.org/10.1007/s12011-011-8998-9

Hernández, I., Alegre, L., Van Breusegem, F., Munné- Bosch, S. 2009. How relevant are flavonoids as antioxidants in plants? Trends Plant Sci. 14: 125– 132. DOI: 10.1016/j.tplants.2008.12.003 DOI: https://doi.org/10.1016/j.tplants.2008.12.003

Kuznetsov, V.V., Kholodova, V.P., Kuznetsov, V.V., Yagodin B.A. 2003. Selenium regulates the water status of plants exposed to drought. Dokl. Biol. Sci. 390: 266–268. DOI: 10.1023/A:1024426104894 DOI: https://doi.org/10.1023/A:1024426104894

Lee, B.R., Jin, Y.L., Jung W.J., Avice J.C., Morvan- Bertrande, A., Ourrye, A., Park, C.W., Kim, T.H. 2008. Water-deficit accumulates sugars by starch degradation-not by de novo synthesis—in white clover leaves (Trifolium repens). Physiol. Plant. 134: 403–411. DOI: 10.1111/j.1399- 3054.2008.01156.x DOI: https://doi.org/10.1111/j.1399-3054.2008.01156.x

Lichtenthaler, H.K., Wellburn, A.R. 1983. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol. Soc. Trans. 11: 591–592. DOI: https://doi.org/10.1042/bst0110591

Lutts, S., Majerus, V., Kinet, J.M. 1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105: 450–458. DOI: 10.1034/j.1399- 3054.1999.105309.x DOI: https://doi.org/10.1034/j.1399-3054.1999.105309.x

Mohammadi, R., Haghparast, R., Sadeghzadeh, B., Ahmadi, H., Solimani, K., Amri, A. 2014. Adaptation patterns and yield stability of durum wheat landraces to highland cold rainfed areas of Iran. Crop Sci. 54: 944–954. DOI: 10.2135/cropsci2013.05.0343 DOI: https://doi.org/10.2135/cropsci2013.05.0343

Morgan, J.M. 1984. Osmoregulation and water stress in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 35: 299–319. DOI: 10.1146/annurev.pp.35.060184.001503 DOI: https://doi.org/10.1146/annurev.pp.35.060184.001503

Niedzwiedz-Siegien, I., Bogatek-Leszczynska, R., Come, D., Corbineau, F. 2004. Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Sci. 167: 879–888. DOI: 10.1016/j.plantsci.2004.05.042 DOI: https://doi.org/10.1016/j.plantsci.2004.05.042

Nsarellah, N., Lhaloui, S. , Nachit, M. 2000. Breeding durum wheat for biotic stresses in the Mediterranean region. In: Durum Wheat Improvement in the Mediterranean Region: New Challenges. Royo, C., Nachit, M.M., Di, Fonzo, N., Araus, J.L. (eds.). CIHEAM, Zaragoza: 341–347.

Verbruggen, N., C. Hermans, C. 2008. Proline accumulation in plants: a review. Amino Acids 35: 753–759. DOI: 10.1007/s00726-008-0061-6 DOI: https://doi.org/10.1007/s00726-008-0061-6

Yao, X.Q., Chu, J.Z., Wang, G.Y. 2009. Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiol. Plant. 31: 1031–1036. DOI: 10.1007/s11738-009-0322-3 DOI: https://doi.org/10.1007/s11738-009-0322-3

Yemm, E.W., Cocking, E.C. 1955. The determination of amino acids with ninhydrin. Analyst 80: 209–213. DOI: 10.1039/an9558000209 DOI: https://doi.org/10.1039/an9558000209

Yemm, E.W., Willism A.J. 1954. The estimation of carbohydrates extracts by anthrone. Biochem. J. 57: 508–514. DOI: https://doi.org/10.1042/bj0570508

Yordanov, V. Velikova, T. Tsonev V. 2003. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol. Special Issue, 187–206.

Downloads

Published

4. 12. 2014

Issue

Section

Agronomy section

How to Cite

HAJIBOLAND, R., SADEGHZADEH, N., & SADEGHZADEH, B. (2014). Effect of Se application on photosynthesis, osmolytes and water relations in two durum wheat (Triticum durum L.) genotypes under drought stress. Acta Agriculturae Slovenica, 103(2), 167–179. https://doi.org/10.14720/aas.2014.103.2.2

Most read articles by the same author(s)