Calcium application mitigates salt stress in Date Palm (Phoenix dactylifera L.( offshoots cultivars of Berhi and Sayer

Authors

  • Abbas M. JASIM Department of Horticulture and Landscape Design, College of Agriculture, University of Basrah, Basrah, Iraq
  • Muayed F. ABBAS Department of Horticulture and Landscape Design, College of Agriculture, University of Basrah, Basrah, Iraq
  • Hussein J. SHAREEF Department of Date Palm Varieties, Date Palm Research Centre, University of Basrah, Basrah, Iraq

DOI:

https://doi.org/10.14720/aas.2016.107.1.11

Keywords:

antioxidant enzymes, Date Palm, salt stress, IAA, ABA, calcium application, proline, RWC

Abstract

The effectiveness of exogenous application of calcium in ameliorating the adverse effects of salt stress (15.9 dS m-1) on date palm offshoots (Phoenix dactylifera L. cultivars of Berhi and Sayer) was investigated. Ca-fertilisers Polixal and Rexene were applied either as soil amendments or foliar spray. The results showed that Polixal at 30 ml offshoot-1 significantly increased plant height, leaf area, total chlorophyll content, RWC, proline concentration, peroxidase activity, IAA content, K+ and K+/Na+ ratio in leaves of Berhi cultivar, whereas catalase activity, ABA and Clcontent were decreased. Also Berhi cultivar responded to soil amendments more than to foliar spray. However, Ca-fertilisers mitigated salt stress in the two cultivars and Berhi cultivar was more salt stress tolerant than Sayer cultivar by maintaining the high ratio of K+/Na+ and regulating levels of IAA to ABA, in silty clay loam soil. These results suggest that calcium application can improve the defense system under salt stress conditions.

References

Ahmed, F. F. and Morsy, M. H. 1999. New methods for measuring leaf area in different fruit species, Minia, J. Agric. Res. Dev.19: 97-105.

Al-Whaibi, M. H; Manzer, H S. and Mohammed, O. B. 2011. Salicylic acid calcium-induced protection of wheat againsts salinity, Protoplasma ;249(3):769-778.Doi: 10.1007/s00709-011-0322-1

Angelini, R.; Manes, F. and Federico, R.1993. Spatial and functional correlation between diamine-oxidase and peroxidase activitys and their dependence upon de-etiolation and wounding in chick-pea stems, planta, 182 (1): 89-96.

Azizpour, K; M. R. Shakiba, K. N. Sima, K, H. Alyari, M. Moghaddam, E. Esfandiari and M. Pessarakli, 2010.“Physiological Response of Spring Durum Wheat Genotypes to Salinity,” Journal of Plant Nutrition, 33 (6): 859-873. Doi: 10.1080/01904161003654097

Baaziz, M. 1989. The activity and preliminary characterization of peroxidases in leaves of cultivars of date palm, Phoenix dactylifera L., New Phytol., 111: 401- 411. Doi: 10.1111/j.1469-8137.1989.tb00703.x

Cramer, G. R. (2002). Sodium-calcium interactions under salinity stress In: Salinity. Environment-Plants- Molecules. Eds. A. Läuchli, and U. Lüttge, Kluwer Academic Publishers.

Cresser, M. S. and Parsons, J. W. 1979. Sulphuric – perchloric acid digestion of plant material for the determination of nitrogen, phosphorus, potassium, calcium and magnesium. Analytical Chimica Acta 109: 431 - 436. Doi: 10.1016/S0003-2670(01)84273-2

El-Khawaga, A.S. 2013. Effect of Anti-salinity Agents on growth and fruiting of Different Date Palm Cultivars, Asian J. of Crop science 5 (1): 65-80.

Esfandiari, E.; F. Shekari, F. Shekari and M. Esfandiari, 2007. The Effect of Salt Stress on Antioxidant Enzymes Activity and Lipid Peroxidation on the Wheat Seedling,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 35 (1): 48-56.

Fahad ,S.; S. Hussain; A. Bano; S. Saud; S. Hassan; D. Shan; F. Ahmed Khan; F. Khan; Y. Chen; C. Wu; M. Adnan Tabassum;M. Chun; M. Afzal; A. Jan; M. T. Jan and J. Huang, 2014. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment, Environ Sci Pollut Res: 1-15.

Goth, L. 1991. Asimple method for determination of serum Catalase and revision of reference range. Clin. Chim. Acta., 196: 143-152. Doi: 10.1016/0009-8981(91)90067-M

Grattan, S. R. and Grieve, C. M. 1999. Salinity mineral nutrient relations in horticultural crops. Sci Hortic 78: 127–157. Doi: 10.1016/S0304-4238(98)00192-7

Gul, B. and M. Ajmal, K, 2006. Role of Calcium in alleviation salinity effects in coastal Halophytes in: M. A. Khan and D. J. Weber (eds.), Ecophysiology of High Salinity Tolerant Plants, Springer. Printed in the Netherlands: 107-114

Hasegawa P., Bressan R., Zhu J., Bohnert H. 2000. Plant cellular and molecular responses to high salinity. in: Torabi, Masoud: R. A. Halim; A. Mokhtarzadeh and Y. Miri (ed). Physiological and Biochemical Responses of Plants in Saline Environment in: Roychowdhury, R. (Ed.), Crop Biology and Agriculture in Harsh Environments, LAP LAMBERT Academic Publishing: 47-80.

Hepler, Peter K. 2005. Calcium: A Central Regulator of Plant Growth and Development, Plant Cell; 17; 2142-2155. Doi: 10.1105/tpc.105.032508

Irigoyen, J. J., Emerich, D. W. Sanchez- Diaz, M. 1992. Water stress induce changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84: 55- 60. Doi: 10.1111/j.1399-3054.1992.tb08764.x

Jafari, M. H. S.; Kafi, M. and Astaraie, A. 2009. Interactive effect of NaCl induced salinity, Calcium and Potassium on Physiomorphological Traits of Sorghum (Sorghum sorghumbicolor L.), Pak. J. Bot., 41(6): 3053- 3063.

Kalra, Y. P.1998. Hand book of methods for plant analysis. soil and plant analysis council, inc. extractable chloride, nitrate, orthophosphate, potassium, and sulfate – sulfurin plant tissue: 2 % acetic and extraction. Robert O. Miller. by Taylor and Francis Group. LLC. P: 115 – 118 .

Kirpichnikova, Anastasia A.; Elena L. Rudashevskaya; Vladislav V. Yemelyanov and Maria F. Shishova, 2014. Ca2+-Transport through Plasma Membrane as a Test of Auxin Sensitivity, Plants, 3: 209-222. Doi: 10.3390/plants3020209

Larkindale, Jane and Knight, Marc R. 2002. Protection against Heat Stress-Induced Oxidative Damage in Arabidopsis Involves Calcium, Abscisic Acid, Ethylene, and Salicylic Acid, Plant Physiol. 128: 682-695. Doi: 10.1104/pp.010320

Lichtenthaler, H. K., and A. R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a an b of leaf extracts in different solvents. Biochemical Society Transmycological 11: 591–593. Doi: 10.1042/bst0110591

Lindberg, S.; Md. A. Kader and V. Yemelyanov. 2012. Calcium Signalling in Plant Cells Under Environmental Stress, in: P. Ahmad and M.N.V. Prasad (eds.), Environmental Adaptations and Stress Tolerance 325 of Plants in the Era of Climate Change, Springer Science, Business Media: 325-360.

Louchli, A. and Grattan, S. R. (2007). Plant growth and development under salinity stress in: M. A. Jenks et al. (eds.), Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops, Springer: 1–32. Doi: 10.1007/978-1-4020-5578-2_1

Luhova, L.; Lebeda, A. and Hederereova, p.p. 2003. Activitys of amino peroxidase, peroxidase and Catalase in seedlings of Pisum sativum L. under different light conditions, plant soil Environ.,49 (4): 151-157.

Rao, A.; Syed, D. A., Syed, M. S.; Shahid, I. A.; Asad Hussain, S., Syed, R. A.; Saima, S.; Fareed, K. and Atia, C. (2013). Potential Antioxidant Activities Improve Salt Tolerance in Ten Varieties of Wheat (Triticum aestivum L.), American Journal of Plant Sciences 4: 69-76. Doi: 10.4236/ajps.2013.46A010

Rastegar, S.; Rahemi,M. and Zargari, H. 2011.Changes in Endogenous Hormones in fruit during Growth and Development of Date Palm fruits, American-Eurasian J. Agric. Environ. Sci., 11: 140-148.

Reddy, A.S.N. (2001). Calcium: silver bullet in signaling, Plant Science 160: 381-404. Doi: 10.1016/S0168-9452(00)00386-1

Tripathi AK, Mishra BM, Tripathi P. 1998. Salinity stress responses in plant growth promoting rhizobacteria. J Biosci 23:463–471. Doi: 10.1007/BF02936140

Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B. 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59: 173–178. 10.1016/j.envexpbot.2005.12.007

Türkan, I. and Demiral, T. 2009. Recent developments in understanding salinity tolerance, Environmental and Experimental Botany 67: 2-9. Doi: 10.1016/j.envexpbot.2009.05.008

Tuteja, N. and Mahajan, S. 2007. Calcium Signaling Network in Plants, Plant Signaling & Behavior 2: 2, 79-85. Doi: 10.4161/psb.2.2.4176

Wu, G. and Wang, S. M. 2012. Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant Soil Environ 58: 121–127.

Wu, G.; N. Liang; Rui-Jun Feng and Jing-Jing Zhang, 2013. Evaluation of salinity tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using proline, soluble sugars and cation accumulation criteria, Acta Physiol Plant, 35: 2665–2674. Doi: 10.1007/s11738-013-1298-6

Zekri, M. and L. R. Parsons. 1990. Calcium Influences Growth and Leaf Mineral Concentration of Citrus under Saline Conditions, HORTSCIENCE 25(7): 784- 786.

Zhu, JK. 2001. Plant salt tolerance, Trends Plant Sci, 6: 66–71. Doi: 10.1016/S1360-1385(00)01838-0

Downloads

Published

6. 04. 2016

Issue

Section

Agronomy section

How to Cite

JASIM, A. M., ABBAS, M. F., & SHAREEF, H. J. (2016). Calcium application mitigates salt stress in Date Palm (Phoenix dactylifera L.( offshoots cultivars of Berhi and Sayer. Acta Agriculturae Slovenica, 107(1), 103–112. https://doi.org/10.14720/aas.2016.107.1.11