Influences of various factors on hairy root induction in Agastache foeniculum (Pursh) Kuntze

Authors

  • Elnaz NOUROZI Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
  • Bahman HOSSEINI Horticulture Department, Faculty of Agriculture, Urmia University, Urmia, Iran
  • Abbas HASSANI Horticulture Department, Faculty of Agriculture, Urmia University, Urmia, Iran

DOI:

https://doi.org/10.14720/aas.2016.107.1.05

Keywords:

Agastache foeniculum, Agrobacterium rhizogenes, culture medium, hairy roots, immersion, injection, rosmarinic acid

Abstract

Agrobacterium rhizogenes is known as a natural tool of genetic engineering in many plant species. For the first time, hairy root induction in Agastache foeniculum using A. rhizogenes, rosmarinic acid content and the effect of different culture media and inoculation methods on hairy root growth rate were investigated. Hairy root culture of A. foeniculum was established by inoculation of the 1-month-old leaf explant with A4 strain of A. rhizogenes and the effectiveness of light – dark conditions and two inoculation methods (immersion and injection) were tested. Furthermore, in immersion method, the effects of inoculation time (3, 5 and 7 min) on root induction were investigated. In the second part of the study, the hairy root culture of A. foeniculum was studied using different basal culture media (MS, 1/2 MS and B5). Rosmarinic acid content in hairy roots and non- transformed roots was analyzed using high-performance liquid chromatography (HPLC). There was no significant difference between various inoculation methods in the ability of hairy roots induction. Observations showed that percentage of hairy root induction was higher when the explants were immersed for 5 min in bacterial suspension. Light conditions displayed the highest hairy root induction rates compared with dark condition. Various culture media are different in terms of types and amounts of nutrients and have influence on growth rate. The maximum growth rate (1.61 g fr wt/50 ml) of hairy roots were obtained in 1/2 MS medium. Rosmarinic acid content in transformed roots (213.42 µg/g dry wt) was significantly higher than non-transformed roots (52.28 µg/ g dry wt).

References

Ajantaa P., Swasti S.S., Arup K.M., Pradeep K.C. 2012. Agrobacterium pRi TL-DNA rolB and TR-DNA opine genes transferred to the spiny amaranth (Amaranthus spinosus L.), a nutraceutical crop. Food Technology and Biotechnology, 51, 1: 26-35.

Akbarian R., Hasanloo T., Khosroshahli M. 2011. Evaluation of Trigonelline production in Trigonella foenum-greacum hairy root cultures of two Iranian masses. Plant Omics, 4, 7: 408-412.

Avansyans R. 2009. Inducion of hairy roots of Papaver somniferom with Agrobacterium rhizogenes and its infection on secondary metabolite. Academic Press, Tehran University, Iran. 250 p.

Bulgakov P. 2008. Functions of rol genes in plant secondary metabolism. Biotechnology Advances, 23, 4: 318-324. DOI: 10.1016/j.biotechadv.2008.03.001

Conn H.J. 1942. Validity of genus Alcaligenes. Journal of Bacteriology, 44: 353-360.

Gandi S., Giri A. 2012. Genetic transformation of Centella asiatica by Agrobacterium rhizogenes. Pharmacognosy Journal, 3: 82-84.

Geng L., Niu L., Gresshoff P.M., Shu Ch., Song F., Huang D., Zhang J. 2012. Efficient production of Agrobacterium rhizogenes – transformed hairy roots and composite plants in peanut (Arachis hypogaea L.). Plant Cell Tissue and Organ Culture, 109: 491-500. DOI: 10.1007/s11240-012-0113-1

Giri A., Narasu M.L. 2000. Transgenic hairy roots: recent trends and applications. Biotechnology Advances, 18: 1–22. DOI: 10.1016/S0734-9750(99)00016-6

Grzegorczyk I., Krolicka A., Wysokinska H. 2006. Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Zeitschrift fur Naturforschung C, 61: 351–356. DOI: 10.1515/znc-2006-5-609

Hasanloo T., Rezazadeh S.H., Rehnema H. 2008. Hairy roots source for the production of valuable medicinal compounds. Journal of Medicinal Plants, 29: 34-42.

Hector E., Flores., Jorge M.V., Victor M.L. 1999. 'Radicle' biochemistry: the biology of root-specific metabolism. Trends in Plant Science, 4, 6: 220-226. DOI: 10.1016/S1360-1385(99)01411-9

Hilton M.G., Rhodes M.J. 1990. Growth and hyoscyamine production of 'hairy root' cultures of Datura stramonium in a modified stirred tank reactor. Applied Microbiology and Biotechnology, 33: 132-138. DOI: 10.1007/BF00176513

Hu Z.B., Du M. 2006. Hairy root and its application in plant genetic engineering. Journal of Integrative Plant Biology, 48: 121-127. DOI: 10.1111/j.1744-7909.2006.00121.x

Kabirnetaj S., Zolala J., Nematzadeh G.A., Shokri E. 2012. Optimization of hairy root culture establishment in chicory plants (Cichorium intybus) through inoculation by Agrobacterium rhizogenes. Iranian Journal of Biotechnology, 4: 61-75.

Karthikeyan A., Palanvel S., Parvathy S., Bhakyaraj R. 2007. Hairy root induction from hypocotyl segments of groundnut (Arachis hypogaea L.). African Journal of Biotechnology, 6: 1817-1820.

Lee S.Y., Lee Ch.Y., Eom S.H., Kim Y.K., Park N., Park S.U. 2010. Rosmarinic acid production from transformed root cultures of Nepeta cataria L. Scientific Research and Essays, 5: 1122-1126.

Lee S.Y., Xu H., Kim Y.K., Park S.U. 2008. Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World Journal of Microbiology and Biotechnology, 24: 969-972. DOI: 10.1007/s11274-007-9560-y

Li W., Koike K., Asada Y., Yoshikawa T., Nikaido T. 2005. Rosmarinic acid production by Coleus forskohlii hairy root cultures. Plant Cell, Tissue and Organ Culture, 80: 151-155. DOI: 10.1007/s11240-004-9541-x

Linsmaier E.M., Skoog F. 1965. Organic growth factor requirements of tobacco tissue culture. Physiologia Plantarum, 18: 100-127. DOI: 10.1111/j.1399-3054.1965.tb06874.x

Mallavarapu G.R., Kulkarni R.N., Baskaran K., Ramesh, S. 2004. The essential oil composition of Anise hyssop grown in India. Flavour and Fragrance Journal, 19: 351-353. DOI: 10.1002/ffj.1316

Matei C.F. 2012. Researches regarding the biology and crop technology of the Agastache foeniculum (Pursh) Kuntze species in the conditions of Transyl vania plane. Academic Press, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca.

Mehrotra S., Kukreja A.K., Khanuja S.P.S., Mishra B.N. 2008. Genetic transformation studies and scal up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electronic Journal of Biotechnology, 11: 1-6. DOI: 10.2225/vol11-issue2-fulltext-6

Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with Tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x

Omidbaigi R., Mahmoodi M. 2010. Effect of irrigation regimes on the essential oil content and composition of Agastache foeniculum. Journal of Essential Oil-Bearing Plants, 13: 59-65. DOI: 10.1080/0972060X.2010.10643791

Omidbaigi R., Kabudani M., Khoorang M. 2008. Nitrogen fertilizer affecting herb dry yield, essential oil content and composition of Agastache foeniculum Pursh. Journal of Essential Oil-Bearing Plants, 11: 261-266. DOI: 10.1080/0972060X.2008.10643628

Pawar P.K., Mathesh wari V.L. 2003. Agrobacterium rhizogenes mediated hairy root induction in two medicinally important members of family Solanaceae. Indian Journal of Biotechnology, 3: 414-417.

Petersen M., Simmonds M.S.J. 2003. Rosmarinic acid. Phytochemistry, 62: 121-125. DOI: 10.1016/S0031-9422(02)00513-7

Riker A.J., Bafield W.M, Wright W.H., Keitt G.W., Sagen H.E. 1930. Studies on infection of hairy root on nursery apple tree. Journal of Agricultural Research, 41: 507-540.

Saifuddin M., Chandy D.M., Osman N., Kalid N. 2013. Induction of fine roots in Leucaena leucocephala using Agrobacterium rhizogenes. Australian Journal of Crop Science, 7: 543-579.

Sharafi A., Hashemi Sohi H., Mousavi A., Azadi P., Dehsara B., Hosseini Khalifani B. 2013. Enhanced morphinan alkaloid production in hairy root cultures of Papaver bracteatum by over-expression of Salutaridinol 7-o-acetyltransferase gene via Agrobacterium rhizogenes mediated transformation. World Journal of Microbiology and Biotechnology, 29, 11: 2125-2131. DOI: 10.1007/s11274-013-1377-2

Sivakumar G., Yu K.W., Paek K.Y. 2005. Production of biomass and ginsenoides from adventitious roots of Panax ginseng in bioreactor cultures. Engineering in Life Sciences, 5: 333-342. DOI: 10.1002/elsc.200520085

Srivastava S., Srivastava A.K. 2007. Hairy root culture for mass – production of high – value secondary metabolites. Critical Reviews in Biotechnology, 27: 29-43. DOI: 10.1080/07388550601173918

Taiz L., Zeiger E. 2006. Plant physiology. Sunderland, MA:Sinauer Assiociates.

Tomilov A., Tomilov N., Yoder J.L. 2007. Agrobacterium tumefeciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta Medica, 225: 1059-1071. DOI: 10.1007/s00425-006-0415-9

Udomsuk L., Jarukamjorn K., Tanaka H. 2009. Isoflavonoid production in a hairy roots culture of Pueraria candollei. Zeitschrift fur Naturforschung C, 64: 687-69115. DOI: 10.1515/znc-2009-9-1013

Wu X. 2007. Establishment and chemical analysis of hairy root of Eucommia ulmoides. Academic Press, Louisiana State University, China.

Xu H., Park J.H., Kim Y.K., Park N., Lee S.Y., Un S. 2009. Optimization of growth and Pyranocoumarins production in hairy root culture of Angelica gigas Nakai. Journal of Medicinal Plants Research, 3: 978- 981.

Yan Q., Shi M., Ng J., Wu J.Y. 2006. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Science, 170: 853-858. DOI: 10.1016/j.plantsci.2005.12.004

Downloads

Published

6. 04. 2016

Issue

Section

Agronomy section

How to Cite

NOUROZI, E., HOSSEINI, B., & HASSANI, A. (2016). Influences of various factors on hairy root induction in Agastache foeniculum (Pursh) Kuntze. Acta Agriculturae Slovenica, 107(1), 45–54. https://doi.org/10.14720/aas.2016.107.1.05

Similar Articles

1-10 of 326

You may also start an advanced similarity search for this article.