Clone candidates differentiation of grapevine Vitis vinifera'Škrlet bijeli' using aroma compounds detected by gas chromatography-mass spectrometry

Authors

  • Ivana Vladimira Petric Croatian Center for Agriculture, Food and Rural Affairs, Institute of Viticulture and Enology, Jandrićeva 42, Zagreb, Croatia
  • Tatjana Košmerl University of Ljubljana, Biotechnical Faculty Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
  • Ivan Pejić University of Zagreb, Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia
  • Veronika Kubanović Croatian Center for Agriculture, Food and Rural Affairs, Institute of Viticulture and Enology, Jandrićeva 42, Zagreb, Croatia
  • Emil Zlatić University of Ljubljana, Biotechnical Faculty Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia

DOI:

https://doi.org/10.14720/aas.2016.107.2.19

Keywords:

clonal selection, must, aroma compounds, gas chromatography-mass spectrometry (GC-MS), multivariate statistical analysis

Abstract

The aim of this work was to investigate existence presence and stability of must specific aroma compounds (monoterpenes C13-norisoprenoids, C6-alcohols, alcohols, esters and carbonyl compounds) and which can be used to establish differences among clone candidates of 'Škrlet bijeli' (Vitis vinifera L.) grapevine variety. The compounds responsible for the varietal aroma profile were determined by gas chromatography- mass spectrometry (GC-MS), in must samples of ten clone candidates grown on two vineyard sites for three consecutive years. Significant variation among clone candidates is shown in 22 out of the total 35 identified aroma compounds. Significant impact of the vineyard site on the clone candidate’s aroma profile was identified. Differences in primary aroma compounds responsible for flavour of 'Škrlet bijeli' variety, linalool, terpinolen, nerol and α-terpineol, were not significant among clone candidates, while remarkable differences were established for β-damascenone. Contrary to expectation, monoterpene geraniol was not detected. Other identified aroma compounds (trans-ocimene, 2-methyl-1-butanol, myrcene, α-phelandrene, cis-ocimene and 3-methyl-1-butanol) noticeably less participate in total flavour description, but they still enable notable clone candidates discrimination.

References

Boidron, R. (1995). Clonal selection in France - Methods, organization, and use, Proceedings of the International Symposium of Clonal Selection, American Society of Enology Viticulture, Davis, CA, pp 1-7.

Bordiga, M., Rinaldi, M., Locatelli, M., Piana, G., & Travaglia, F. (2013). Characterization of Muscat wines aroma evaluation using comprehensive gas chromatography followed by a post-analytic approch to 2D contour plots comparison, Food Chemistry, 140, 57-67. Doi: 10.1016/j.foodchem.2013.02.051

Botelho, G. M. A. (2008). Characterisation of the aroma components of clonal grapes and wines from Aragonez and Trincadeira Vitis vinifera L. cultivars, Ph thesis, Universidade de trás-os-montes e alto douro.

Câmara, J. S., Alves, M. A., & Marques, J.C. (2007). Clasiffication of Boal, Malvazia, Sercial and Verdelho wines based on terpenoid patterns, Food Chemistry, 101, 475-484. Doi: 10.1016/j.foodchem.2006.02.004

Coelho, E., Rocha, S. M., Barros, A. S., Delgadillo, I., & Coimbra, M. A. (2007). Screening of variety and pre-fermentation related volatile compounds during ripening of white grapes to define their evolution profile, Analytica Chimica Acta, 597(2), 257–264. Doi: 10.1016/j.aca.2007.07.010

Coombe, B. G., & McCarthy, M. G. (1997). Identification and naming of the inception of aroma development in ripening grape berries, Australian Journal of Grape and Wine Research, 3 (1), 18-20. Doi: 10.1111/j.1755-0238.1997.tb00111.x

del Caro, A., Fanara, C., Genovese, A., Moio, L., Piga, A., & Piombino, P. (2012). Free and enzymatically hydrolysed volatile compounds of sweet wines from Malvasia and Muscat grapes (Vitis vinifera L.) grown in Sardinia, South Africa Journal of Enology and Viticulture, 33(1), 115-121.

Duchêne, E., Legras, J. L., Karst, F., Merdinoglu, D., Claudel, P., Jaegli, N., & Pelsy, F. (2009). Variation of linalool and geraniol content within two pairs of aromatic and non-aromatic grapevine clones, Australian Journal of Grape and Wine Research, 15(2), 120-130. Doi: 10.1111/j.1755-0238.2008.00039.x

Ebeler, S. E. & Thorngate, J. H. (2009). Wine chemistry and flavor: Looking into the crystal glass, Journal of Agricultural and Food Chemistry, 57, 8098-8108. Doi: 10.1021/jf9000555

Genovese, A., Lamorte, A. S., Gambuti, A., & Moio, L. (2013). Aroma of Aglianica and Uva di Troi grapes by aromatic series, Food Research International, 53, 15-23. Doi: 10.1016/j.foodres.2013.03.051

Genovese, A., Gambuti, A., Lamorte, S. A., & Moio, L. (2013). An extract procedure for studying the free and glycosilated aroma compounds in grapes, Food Chemistry, 136, 822-834. Doi: 10.1016/j.foodchem.2012.08.061

Gómez García-Carpintero, E., Sánchez-Palomo, E., Gómez, Gallego, M. A., & González-Viñas, M. A. (2011). Volatile and sensory characterization of red wines from cv. Moravia Agria minority grape variety cultivated in La Mancha region over five consecutive vintages, Food Research International, 44, 1549-1560. Doi: 10.1016/j.foodres.2011.04.022

Iyer, M. M., Sacks, G. L., & Padilla-Zakour, O. I. (2010). Impact of harvesting and processing conditions on green leaf volatile development and phenolics in Concord grape juice, Journal of Food Sciences, 75, 297-304. Doi: 10.1111/j.1750-3841.2010.01559.x

Koch, A., Doyle, C. L., Matthews, M. A., Williams, L. E., &Ebeler, S. E. (2010). 2-Methoxy-3-isobutylpyrazine in grape berries and its dependence on genotype, Phytochemistry, 71(17–18), 2190–2198. Doi: 10.1016/j.phytochem.2010.09.006

Komes, D., Ulrich, D., & Lovric, T. (2006). Characterization of odor-active compounds in Croatian Rhine Riesling wine, subregion Zagorje, European Food Research and Technololgy, 222, 1−7. Doi: 10.1007/s00217-005-0094-y

Loscos, N., Hernandez-Orte, P., Cacho, J., & Ferreira, V. (2009). Comparison of the suitability of different hydrolytic strategies to predict aroma potential of different grape varieties, Journal of Agricultural and Food Chemistry, 57, 2468-2480. Doi: 10.1021/jf803256e

Marais, J. (1983). Terpens in the aroma of grapes and wines: a review, South African Journal of Enology and Viticulture, 4, 49–60.

Marais, J., & Rapp, A. (1991). The selection of aroma-rich clones of Vitis vinifera L. cv. gewürtztraminer and weisser riesling by means of terpene analyses, South African Journal for Enology and Viticulture, 12(1), 51-56.

Mateo, J. J., & Jiménez, M. (2000). Monoterpene in grape juice and wines, Journal Chromatography A, 881, 557-567. Doi: 10.1016/S0021-9673(99)01342-4

McCarthy, M. G. (1992). Clonal and pruning effects on Muscat à petite grains blanc yield and terpene concentration, American Journal of Enology and Viticulture, 43(2), 149-152.

Prosen, H., Janeš, L., Strlič, M., Rusjan, D., & Kočar, D. (2007). Analysis of free and bound aroma compounds in grape berries using headspace solid-phase microextraction with GC-MS and preliminary study of solid-phase extraction with LC-MS, Acta Chimica Slovenica, 54(1), 25-32.

Rapp, A. (1988). Wine aroma substances from gas chromatographic analysis, In: Wine Analys, Linskens, H. F. and Jackson, J. F. (Eds.), Springer-Verlag, Berlin Heidelberg, p. 29-66. Doi: 10.1007/978-3-642-83340-3_3

Robinson, A. L. (2011). Environmental influences on grape aroma potential, PhD thesis, Murdoch University.

Sánchez-Palomo E., Gómez García-Carpintero E., Gómez Gallego M.A., & González-Viñas M. A. (2012). The Aroma of Rojal Red Wines from La Mancha Region – Determination of Key Odorants. Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications, p.147-170. Doi: 10.5772/32801

Sánchez-Palomo, E., Consuelo Diaz-Maroto, M., & Soledad Pérez-Coello, M. (2005). Rapid determinationof volatile compounds in grapes by HS-SPME coupled with GC-MS, Talanta, 66(5), 1152–1157. Doi: 10.1016/j.talanta.2005.01.015

Setkova, L., Risticevic, S., & Pawliszyn, J. (2007). Rapid headspace solid-phase microextraction-gas chromatographic–time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction: II: Classification of Canadian and Czech ice wines using statistical evaluation of the data, Journal of Chromatography A, 1147(2), 224–240. Doi: 10.1016/j.chroma.2007.02.052

Skinkis, P. A., Bordelon, B. P., & Wood K. V. (2008). A Comparison of Monoterpene Constituents of Traminette, Gewurztraminer and Riesling Wine Grapes, American Journal of Enology and Viticulture, 59(4), 440-445.

Versini, G., Rapp, A., Volkmann, C., & Scienza, A. (1990). Flavour compounds of clones from different grape varieties, In: Proceeding of the 5th International Symposium on Grape Breeding, 513–524, (Special Issue of Vitis) St Martin, Pfalz, Germany.

Winkler A. J., Cook J. A., Kliewe, W. M., Lider L.A. (1974). General viticulture. University of California press, Berkeley, Los Angeles, London.

Downloads

Published

26. 10. 2016

Issue

Section

Agronomy section

How to Cite

Petric, I. V., Košmerl, T., Pejić, I., Kubanović, V., & Zlatić, E. (2016). Clone candidates differentiation of grapevine Vitis vinifera’Škrlet bijeli’ using aroma compounds detected by gas chromatography-mass spectrometry. Acta Agriculturae Slovenica, 107(2), 483-496. https://doi.org/10.14720/aas.2016.107.2.19

Similar Articles

1-10 of 737

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)