Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants


  • Hamid Mohammadi Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
  • Mohammad Esmailpour Jahrom Universtiy, Department of Medicinal and Aromatic plants, Jahrom, Iran
  • Ali GHERANPAYE Azarbaijan Shahid Madani University, Faculty of Agriculture, Tabriz, Iran




aromatic plants, drought stress, malondialdehyde, reactive oxygen species, TiO2NPs


Water-deficit stress is the most important environmental factors limiting plant growth, and production. Nano-titanium dioxide (nano anataseTiO2) can have various profound effects on the crop physiological, biochemical and morphological characteristics. In the present research, the influences of different concentrations ofTiO2 nanoparticles (NPs) (0, 10 and 40 ppm) and water-deficit stress on Dragonhead (Dracocephalum moldavica L.) were investigated in a factorial experiment based on randomized complete block design with three replications. Results showed that under normal irrigation, foliar application of 10 ppm TiO2 NPs increased plant shoot dry mass and essential oils content. Under water-deficit stress condition, plants treated with 10 ppm TiO2 NPs had more proline and much less H2O2 and malondialdehyde content as compared to untreated plants. Therefore, it can be concluded that proper concentration of TiO2 NPs probably can be used as an exogenous stimuli for improvement of shoot growth and essential oil content in plants. Furthermore, water-deficit stress-induced damages such as oxidative stress and membrane damage can be ameliorated by foliar application of TiO2 NPs at appropriate concentrations.

Author Biography

  • Hamid Mohammadi, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
    Hamid Mohammadi, Ph.D.
    Assistant Professor
    Faculty of Agriculture,
    Azarbaijan Shahid Madani University, Tabriz, Iran.


Alaei, S.H., Melikyan, A., Kobraee, S., & Mahna, N. (2013). Effect of different soil moisture levels on morphological and physiological characteristics of Dracocephalum moldavica. Agricultural Communications,1: 23-26.

Ashraf, M., & Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59:206-216. Doi: 10.1016/j.envexpbot.2005.12.006

Baghalian, K., Abdoshah, S.h., Khalighi-Sigaroodi, F., & Paknejad, F. (2011). Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiology and Biochemistry, 49:201-207. Doi: 10.1016/j.plaphy.2010.11.010

Barr, H.D., & Weatherley, P.E. (1962).A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Sciences, 15:413-428. Doi: 10.1071/BI9620413

Bates, L.S., Waldern, R.P., &Tear, I.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39:205-207. Doi: 10.1007/BF00018060

Dastmalchi, K., Dorman, H.J.D., Kosar, M., & Hiltunen, R. (2007).Chemical composition and in vitro antioxidant evaluation of a water soluble Moldavian balm (Dracocephalum moldavica L.) extract. LWT-Food Science and Technololgy,40:239-248. Doi: 10.1016/j.lwt.2005.09.019

Dastmalchi, K., Dorman, H.J.D., Laakso, H.J., & Hiltunen, R. (2007). Chemical composition and antioxidative activity of Moldavian balm (Dracocephalum moldavica L.) extracts. LWT-Food Science and Technology, 40:1655-1663. Doi: 10.1016/j.lwt.2006.11.013

Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146:101-106. Doi: 10.1007/s12011-011-9222-7

Gao, F., Liu, C., Qu, C., Zheng, L., Yang, F., Su, M., & Hong, F. (2008). Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? Biometals, 21:211-217. Doi: 10.1007/s10534-007-9110-y

Ghosh, M., Bandyopadhyay, M., & Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere, 81:1253-1262. Doi: 10.1016/j.chemosphere.2010.09.022

Hazeem, L.J., Bououdina, M., Rashdan, S., Brunet, L., Slomianny, C., & Boukherroub, R. (2016). Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environmental Science and Pollution Research,23(3): 2821-2830. Doi: 10.1007/s11356-015-5493-4

Heath, R.L., & Packer L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochemistry and Biophysics, 125:189-198. Doi: 10.1016/0003-9861(68)90654-1

Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105:269-279. Doi: 10.1385/BTER:105:1-3:269

Khodakovskaya, M.V., & Lahiani, M.H. (2014). Nanoparticles and Plants: FromToxicity to Activation of Growth, in Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology (eds S. C. Sahu and D. A. Casciano), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781118856017.

Kleinwächter, M., Paulsen, J., Bloem, E., Schnug, E., & Selmar, D. (2015). Moderate drought and signal transducer induced biosynthesis of relevant secondary metabolites in thyme (Thymus vulgaris), greatercelandine (Chelidonium majus) and parsley (Petroselinum crispum). Industrial Crops and Products, 64:158-166. Doi: 10.1016/j.indcrop.2014.10.062

Larue,C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.M., Brisset, F., & Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Science of the Total Environment, 431:197-208. Doi: 10.1016/j.scitotenv.2012.04.073

Lei, Z., Su, M.Y., Wu, X., Liu, C., Qu, C.X., Chen, L., Huang, H., Liu, X.Q., & Hong, F.S. (2008). Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-Beta radiation. Biological Trace Element Research, 121:69-79. Doi: 10.1007/s12011-007-8028-0

Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determination of total carotenoids and chlorophylls a and b in leaf extracts in different solvents. Biochemical Society Transactions,11:591-592. Doi: 10.1042/bst0110591

Ma, L.L., Liu, C., Qu, C.X., Yin, S.T., Liu, J.,Gao, F.Q., & Hong, F.S. (2008). Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biological Trace Element Research, 122: 168-178. Doi: 10.1007/s12011-007-8069-4

Manukyan, A. (2011). Effect of growing factors on productivity and quality of lemon catmint, lemon balm and sage under soil less greenhouse production: I. drought stress. Medicinal and aromatic plant science and biotechnology, 5:119-125.

Melchiorre, M., Robert, G., Trippi, V., Racca, R., & Lascano, H.R. (2009). Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regulation, 57:57-68. Doi: 10.1007/s10725-008-9322-3

Mishra, V., Mishra, R.K., Dikshit, A., & Pandey, A.C. (2014). Interactions of Nanoparticles with Plants: An Emerging Prospective in the Agriculture Industry. In: Ahmad P, Rasool S. (ed) Emerging Technologies and Management of Crop Stress Tolerance. Elsevier, Oxford, pp.159-180. Doi: 10.1016/b978-0-12-800876-8.00008-4

Mohammadi, R., Maali-Amiri, R., & Abbasi, A. (2013). Effect of TiO2 nanoparticles on chickpea response to cold stress. Biological Trace Element Research, 152:403-410. Doi: 10.1007/s12011-013-9631-x

Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A., Quigg, A., Santschi, P.H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17:372-386. Doi: 10.1007/s10646-008-0214-0

Nazari, M., MaaliAmiri, R., Mehraban, F.H., & Khaneghah, H.Z. (2012). Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. Russian Journal of Plant Physiology, 59:183-189. Doi: 10.1134/S102144371201013X

Owolade, O.F., Ogunleti, D.O., & Adenekan, M.O. (2008). Titanium dioxide affected diseases, development and yield of edible cowpea. Electronic Journal of Environmental, Agricultural and Food Chemistry,7:2942-2947.

Raliya, R., Biswas, P., & Tarafdar, J.C. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vignaradiata L.). Biotechnology Reports,5:22-26. Doi: 10.1016/j.btre.2014.10.009

Sefidkon, F., Jamzad, Z., & Mirza, M. (2004).Chemical variation in the essential oil of Satureja sahendica from Iran. Food Chemistry, 88:325-328. Doi: 10.1016/j.foodchem.2003.12.044

Selmar, D., & Kleinwachter, M. (2013). Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant and Cell Physiology, 54:817-826. Doi: 10.1093/pcp/pct054

Serraj, R., & Sinclair, T.R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell &Environment, 25:333-341. Doi: 10.1046/j.1365-3040.2002.00754.x

Su, M., Wu, X., Liu, C., Qu, C., Liu, X., Chen, L., Huang, H., & Hong, F. (2007). Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biological Trace Element Research, 119:183-192. Doi: 10.1007/s12011-007-0065-1

Teulat, B., Zoumarou-Wallis, N., Rotter, B., Ben Salem, M., Bahri, H., & This, D. (2003). QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theoretical and Applied Genetics,108:181-188. Doi: 10.1007/s00122-003-1417-7

Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151:59-66. Doi: 10.1016/S0168-9452(99)00197-1

Yamori, W., Masumoto, C., Fukayama, H., & Makino, A. (2012). Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. The Plant Journal, 71: 871–880. Doi: 10.1111/j.1365-313X.2012.05041.x

Yang, L.N., Xing, J.G., He, C.H., & Wu, T.(2014). The phenolic compounds from Dracocephalum moldavica L. Biochemical Systematics and Ecology, 54:19-22. Doi: 10.1016/j.bse.2013.12.009

Yousefzadeh, S., Modarres-Sanavy, A.M., Sefidkon, F., Asgarzadeh, A., Ghalavand, A., & Sadat-Asilan, K. (2013). Effects of Azocompost and urea on the herbage yield and contents and compositions of essential oils from two genotypes of dragonhead (Dracocephalum moldavica L.) in two regions of Iran. Food chemistry, 138: 1407-1413. Doi: 10.1016/j.foodchem.2012.11.070

Zhang, P., Cui, H.X., Zhang, Z.J., & Zhong, R.G. (2008). Effects of nano-TiO2 photosemiconductor on photosynthesis of cucumber plants. Chinese Agricultural Science Bulletin, 24:230-233.



26. 10. 2016



Agronomy section

How to Cite

Mohammadi, H., Esmailpour, M., & GHERANPAYE, A. (2016). Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Acta Agriculturae Slovenica, 107(2), 385-396. https://doi.org/10.14720/aas.2016.107.2.11

Similar Articles

1-10 of 584

You may also start an advanced similarity search for this article.