Micro RNA research in cattle, pig, sheep, and chicken

Authors

  • Neža POGOREVC Univ. of Ljubljana, Biotechnical Fac., Dept. of Animal Science, Groblje 3, SI-1230 Domžale, Slovenia
  • Minja ZORC Univ. of Ljubljana, Biotechnical Fac., Dept. of Animal Science, Groblje 3, SI-1230 Domžale, Slovenia
  • Tanja KUNEJ Univ. of Ljubljana, Biotechnical Fac., Dept. of Animal Science, Groblje 3, SI-1230 Domžale, Slovenia

DOI:

https://doi.org/10.14720/aas.2015.106.1.2

Keywords:

animal production, genetics, microRNA

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that play key roles in regulating gene expression. Polymorphisms in miRNA precursors, target genes or within components of silencing machinery contribute significantly to the phenotypic diversity in animals. Due to this role miRNAs became the subject of increased research interest in association with production traits in livestock. In this article we presented examples of associations between miRNA genes and phenotypes of four livestock species: cattle, pig, sheep, and chicken. Most miRNA research studies are focused on their functioning in muscle, adipose tissues, gonads, fetal development and immune system. MicroRNA functions also impact animal productivity and consequently economic success of farming. With understanding miRNA functions in various biological pathways it is possible to develop new strategies for improving the productivity of livestock.

References

Abd El Naby W.S., Hagos T.H., Hossain M.M., Salilew-Wondim D., Gad A.Y., Rings F., Cinar M.U., Tholen E., Looft C., Schellander K., Hoelker M., Tesfaye D. 2011. Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote, 21, 1: 31–51. doi:10.1017/S0967199411000566

Bannister S.C., Smith C.A., Roeszler K.N., Doran T.J., Sinclair A.H., Tizard M.L. 2011. Manipulation of estrogen synthesis alters MIR202* expression in embryonic chicken gonads. Biology of Reproduction, 85, 1: 22–30. doi:10.1095/biolreprod.110.088476

Bartel D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 2: 281–297. doi:10.1016/S0092-8674(04)00045-5

Berry C., Thomas M., Langley B., Sharma M, Kambadur R. 2002. Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin. American Journal of Physiology Cell Physiology, 283, 1: C135–C141. doi:10.1152/ajpcell.00458.2001

Chen C., Deng B., Qiao M., Zheng R., Chai J., Ding Y., Peng J., Jiang S. 2012. Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs. Plos One, 7, 2: e31426. doi:10.1371/journal.pone.0031426

Cirera S., Birck M., Busk P.K., Fredholm M. 2010. Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet. Comparative Medicine, 60, 2: 136–141

Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Natural Genetics, 38, 7: 813–818. doi:10.1038/ng1810

Cutting A.D., Bannister S.C., Doran T.J., Sinclair A.H., Tizard M.V., Smith C.A. 2012. The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosome Research, 20, 1: 201–213. doi:10.1007/s10577-011-9263-y

Fatima A., Morris D.G. 2013. MicroRNAs in domestic livestock. Physiological Genomics, 45, 16: 685–696. doi:10.1152/physiolgenomics.00009.2013

Georges M., Coppieters W., Charlier C. 2007. Polymorphic miRNA-mediated gene regulation: contribution to phenotypic variation and disease. Current Opinion in Genetics and Development, 17, 3: 166–176. doi:10.1016/j.gde.2007.04.005

Guan Y.J., Yang X., Wei L., Chen Q. 2011. MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. The Journal of Federation of American Societies for Experimental Biology, 25, 12: 4457–4466. doi:10.1096/fj.11-185132

Guduric-Fuchs J., O’Connor A., Cullen A., Harwood L., Medina R.J., O’Neill C.L., Stitt A.W., Curtis T.M., Simpson D.A. 2012. Deep sequencing reveals predominant expression of miR-21 amongst the small non-coding RNAs in retinal microvascular endothelial cells. Journal of Cellular Biochemistry, 113, 6: 2098–2111. doi:10.1002/jcb.24084

Holley C., Topkara V. 2011. An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovascular Drugs and Therapy, 25, 2: 151–159. doi:10.1007/s10557-011-6290-z

Hou X., Tang Z., Liu H., Wang N., Ju H., Li K. 2012. Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. Plos One, 7, 12: e52123

Hutvagner G., McLachlan J., Pasquinelli A.E., Balint E., Tuschl T., Zamore P.D. 2001. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293, 5531: 834–838. doi:10.1126/science.1062961

Izumi H., Kosaka N., Shimizu T., Sekine K., Ochiya T., Takase M. 2012. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. Journal of Dairy Science, 95, 9: 4831–4841. doi:10.3168/jds.2012-5489

Jeong W., Kim J.M., Ahn S., Lee S., Bazer F., Han J., Song G. 2012. AHCYL1 is mediated by estrogen-induced ERK1/2 MAPK cell signaling and microRNA regulation to effect functional aspects of the avian oviduct. Plos One, 7, 11: e49204

Jin W., Dodson M.V., Moore S.S., Basarab J.A., Guan L.L. 2010. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development. BMC Molecular Biology, 11, 29: 1–8. doi:10.1186/1471-2199-11-29

Khvorova A., Reynolds A., Jayasena S.D. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell, 115, 2: 209–216. doi:10.1016/S0092-8674(03)00801-8

Kim D., Song J., Jin E.J. 2010. MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. Journal of Biological Chemistry, 285, 35: 26900–26907. doi:10.1074/jbc.M110.115105

Kim D., Song J., Kim S., Chun C.H., Jin E.J. 2011a. MicroRNA-34a regulates migration of chondroblast and IL-1beta-induced degeneration of chondrocytes by targeting EphA5. Biochemical and Biophysical Research Communications, 415, 4: 551–557. doi:10.1016/j.bbrc.2011.10.087

Kim D., Song J., Kim S., Kang S.S., Jin E.J. 2011b. MicroRNA-142-3p regulates TGF-beta3-mediated region-dependent chondrogenesis by regulating ADAM9. Biochemical and Biophysical Research Communications, 414, 4: 653–659. doi:10.1016/j.bbrc.2011.09.104

Kim D., Song J., Kim S., Park H.M., Chun C.H., Sonn J., Jin E.J. 2012. MicroRNA-34a modulates cytoskeletal dynamics through regulating RhoA/Rac1 cross-talk in chondroblasts. Journal of Biological Chemistry, 287, 15: 12501–12509. doi:10.1074/jbc.M111.264382

Kim H.K., Lee Y.S., Sivaprasad U., Malhotra A., Dutta A. 2006. Muscle-specific microRNA miR-206 promotes muscle differentiation. Journal of Cell Biology, 174, 5: 677–687. doi:10.1083/jcb.200603008

Kozomara A., Griffiths Jones S. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42: D68–D73. doi:10.1093/nar/gkt1181

Lawless N., Vegh P., O’Farrelly C., Lynn D.J. 2014. The role og microRNAs in bovine infection and immunity. Frontiers in Immunology, 5, 611: 1–7

Lee J.Y., Jeong W., Lim W., Kim J., Bazer F.W., Han J.Y., Song G. 2012. Chicken pleiotrophin: regulation of tissue specific expression by estrogen in the oviduct and distinct expression pattern in the ovarian carcinomas. Plos One, 7, 4: e34215

Lee S.I., Lee B.R., Hwang Y.S., Lee H.C., Rengaraj D., Song G., Park T.S., Han J.Y. 2011. MicroRNA-mediated posttranscriptional regulation is required for maintaining undifferentiated properties of blastoderm and primordial germ cells in chickens. Proceedings of the National Academy of Sciences of the United States of America, 108, 26: 10426–10431. doi:10.1073/pnas.1106141108

Lee Y., Jeon K, Lee J.T., Kim S., Kim V.N. 2002. MicroRNA maturation stepwise prcessing and subcellular localization. The European Molecular Biology Organization Journal, 21, 17: 4663–4670. doi:10.1093/emboj/cdf476

Lei B., Gao S., Luo L.F., Xia X.Y., Jiang S.W., Deng C.Y., Xiong Y.Z., Li F.E. 2011. A SNP in the miR-27a gene is associated with litter size in pigs. Molecular Biology Reports, 38, 6: 3725–3729. doi:10.1007/s11033-010-0487-2

Li G., Li Y., Li X., Ning X., Li M., Yang G. 2011. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. Journal of Cellular Biochemistry, 112, 5: 1318–1328. doi:10.1002/jcb.23045

Li H., Zhang Z., Zhou X., Wang Z., Wang G., Han Z. 2011. Effects of microRNA-143 in the differentiation and proliferation of bovine intramuscular preadipocytes. Molecular Biology Reports, 38, 7: 4273–4280. doi:10.1007/s11033-010-0550-z

Li H., Sun G.R., Lv S.J., Wei Y., Han R.L., Tian Y.D., Kang X.T. 2012. Association study of polymorphisms inside the miR1657 seed region with chicken growth and meat traits. British Poultry Science, 53, 6: 770–776. doi:10.1080/00071668.2012.750716

Li H., Sun G.R., Tian Y.D., Han R.L., Li G.X., Kang X.T. 2013. MicroRNAs-1614-3p gene seed region polymorphisms and association analysis with chicken production traits. Journal of Applied Genetics, 54, 2: 209–213. doi:10.1007/s13353-013-0142-4

Li T., Wu R., Zhang Y., Zhu D. 2011. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics, 12, 186: 1–20. doi:10.1186/1471-2164-12-186

Lian C., Sun B., Niu S., Yang R., Liu B., Lu C., Meng J., Qiu Z., Zhang L., Zhao Z. 2012. A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing. The Federation of European Biochemical Societies Journal, 279, 6: 964–975. doi:10.1111/j.1742-4658.2012.08480.x

Lindsay M.A. 2008. MicroRNAs and the immune response. Trends in Immunology, 29, 7: 343–351. doi:10.1016/j.it.2008.04.004

Lingenfelter B.M., Tripurani S.K., Tejomurtula J., Smith G.W., Yao J. 2011. Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2): a maternal effect gene regulated by miR-181a. Reproductive Biology and Endocrinology, 9, 40: 1–9. doi:10.1186/1477-7827-9-40

Maak S., Boettcher D., Komolka K., Tetens J., Wimmers K., Reinsch N., Swalve H.H., Thaller G. 2010. Exclusion of sequence polymorphisms in the porcine ITGA5 and MIR148B loci as causal variation for congenital splay leg in piglets. Animal Genetics, 41, 4: 447–448

McDaneld T.G. 2009. MicroRNA mechanism of gene regulation and application to livestock. Journal of Animal Science, 87, 14: E21–E28. doi:10.2527/jas.2008-1303

Miles J.R., McDaneld T.G., Wiedmann R.T., Cushman R.A., Echternkamp S.E., Vallet J.L., Smith T.P. 2012. MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Animal Reproduction Science, 130, 1–2: 16–26

Miretti S., Martignani E., Taulli R., Bersani F., Accornero P., Baratta M. 2011. Differential expression of microRNA-206 in skeletal muscle of female Piedmontese and Friesian cattle. Veterinary Journal, 190, 3: 412–413. doi:10.1016/j.tvjl.2010.12.012

Mondou E., Dufort I., Gohin M., Fournier E., Sirard M.A. 2012. Analysis of microRNAs and their precursors in bovine early embryonic development. Molecular Human Reproduction, 18, 9: 425–434. doi:10.1093/molehr/gas015

Muramatsu H., Zou P., Kurosawa N., Ichihara-Tanaka K., Maruyama K., Inoh K., Sakai T., Chen L., Sato M., Muramatsu T. 2006. Female infertility in mice deficient in midkine and pleiotrophin, which form a distinct family of growth factors. Genes Cells, 11, 12: 1405–1417. doi:10.1111/j.1365-2443.2006.01028.x

Naeem A., Zhong K., Moisa S., Drackley J., Moyes K., Loor J. 2012. Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. Journal of Dairy Science, 95, 11: 6397–6408. doi:10.3168/jds.2011-5173

Naguibneva I., Ameyar-Zazoua M., Polesskaya A., Ait-Si-Ali S., Groisman R., Souidi M., Cuvellier S., Harel-Bellan A. 2006. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biology, 8, 3: 278–284. doi:10.1038/ncb1373

Rengaraj D., Lee B.R., Lee S.I., Seo H.W., Han J.Y. 2011. Expression patterns and miRNA regulation of DNA methyltransferases in chicken primordial germ cells. Plos One, 6, 5: e19524

Romao J.M., Jin W., He M., McAllister T., Guan le L. 2012. Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattleunder different diet. PLoS One, 7, 7: e40605

Stowe H.M., Curry E., Calcatera S.M., Krisher R.L., Paczkowski M., Pratt S.L. 2012. Cloning and expression of porcine Dicer and the impact of developmental stage and culture conditions on microRNA expression in porcine embryos. Gene, 501, 2: 198–205. doi:10.1016/j.gene.2012.03.058

Sweetman D., Rathjen T., Jefferson M., Wheeler G., Smith T. G., Wheeler G.N., Munsterberg A., Dalmay T. 2006. FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos. Developmental Dynamics, 235, 8: 2185–2191. doi:10.1002/dvdy.20881

Tang Z., Liang R., Zhao S., Wang R., Huang R., Li K. 2014. CNN3 is reguleted by microRNA-1 during muscle development in pigs. International Journal of Biological Sciences, 10, 4: 377–385. doi:10.7150/ijbs.8015

Torley K.J., da Silveira J.C., Smith P., Anthony R.V., Veeramachaneni D.N., Winger Q.A., Bouma G.J. 2011. Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reproductive Biology and Endocrinology, 9, 2: 1–11. doi:10.1186/1477-7827-9-2

Townley-Tilson W.H., Callis T.E., Wang D. 2010. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. The International Journal of Biochemistry and Cell Biology, 42, 8: 1252–1255. doi:10.1016/j.biocel.2009.03.002

Trakooljul N., Hicks J.A., Liu H.C. 2010. Identification of target genes and pathways associated with chicken microRNA miR-143. Animal Genetics, 41, 4: 357–364

Tripurani S.K., Lee K.B., Wee G., Smith G.W., Yao J. 2011. MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Developmental Biology, 11, 25: 1–9. doi:10.1186/1471-213x-11-25

Wang X., Gu Z., Jiang H. 2013. MicroRNAs in farm animals. Animal, 7, 10: 1567–1575. doi:10.1017/S1751731113001183

Wang X.G., Yu J.F., Zhang Y., Gong D.Q., Gu Z.L. 2012. Identification and characterization of microRNA from chicken adipose tissue and skeletal muscle. Poultry Science, 91, 1: 139–149. doi:10.3382/ps.2011-01656

Xu S., Linher-Melville K., Yang B.B., Wu D., Li J. 2011. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology, 152, 10: 3941–3951. doi:10.1210/en.2011-1147

Yan X., Huang Y., Zhao J.X., Rogers C.J., Zhu M.J., Ford S.P., Nathanielsz P.W., Du M. 2013. Maternal obesity downregulates microRNA let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development. International Journal of Obesity, 37, 4: 568–575. doi:10.1038/ijo.2012.69

Zhao S., Zhang J., Hou X., Zan L., Wang N., Tang Z., Li K. 2012. OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. International Journal of Biological Sciences, 8, 4: 459–469. doi:10.7150/ijbs.3821

Zorc M., Omejec S., Tercic D., Holcman A., Dovc P., Kunej T. 2015. Catalog of genetic variants within mature microRNA seed regions in chicken. Poultry Science, 94, 9: 2037–2040. doi:10.3382/ps/pev170

Published

24. 12. 2015

Issue

Section

Animal Science section

How to Cite

POGOREVC, N., ZORC, M., & KUNEJ, T. (2015). Micro RNA research in cattle, pig, sheep, and chicken. Acta Agriculturae Slovenica, 106(1), 13–20. https://doi.org/10.14720/aas.2015.106.1.2

Similar Articles

1-10 of 540

You may also start an advanced similarity search for this article.