Establishment of primary keratinocyte culture from horse tissue biopsates

Authors

  • Jernej OGOREVC Univ. of Ljubljana, Biotechnical Fac., Dept. of Animal Science, Groblje 3, SI-1230 Domžale, Slovenia
  • Tjaša LAPANJA Univ. of Ljubljana, Biotechnical Fac., Dept. of Animal Science, Study program in biotechnology, Groblje 3, SI-1230 Domžale, Slovenia
  • Klavdija POKLUKAR Univ. of Ljubljana, Biotechnical Fac., Dept. of Animal Science, Study program in biotechnology, Groblje 3, SI-1230 Domžale, Slovenia
  • Natalija TOMINŠEK Univ. of Ljubljana, Biotechnical Fac., Dept. of Animal Science, Study program in biotechnology, Groblje 3, SI-1230 Domžale, Slovenia
  • Peter DOVČ Univ. of Ljubljana, Biotechnical Fac., Dept. of Animal Science, Groblje 3, SI-1230 Domžale, Slovenia

DOI:

https://doi.org/10.14720/aas.2015.106.2.3

Keywords:

molecular biology, primary cell culture, skin, horses, keratinocytes

Abstract

Primary cell lines established from skin tissue can be used in immunological, proteomic and genomic studies as in vitro skin models. The goal of our study was to establish a primary keratinocyte cell culture from tissue biopsates of two horses. The primary keratinocyte cell culture was obtained by mechanical and enzymatic dissociation and with explant culture method. The result was a heterogeneous primary culture comprised of keratinocytes and fibroblasts. To distinguish epithelial and mesenchymal cells immunofluorescent characterisation was performed, using antibodies against cytokeratin 14 and vimentin. We successfully at attained a primary cell line of keratinocytes, which could potentially be used to study equine skin diseases, as an animal model for human diseases, and for cosmetic and therapeutic product testing.

References

Aasen T., Izpisúa Belmonte J.C. Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. 2010. Nature Protocols, 5: 371–382. doi:10.1038/nprot.2009.241 DOI: https://doi.org/10.1038/nprot.2009.241

Cerrato S., Ramio-Lluch L., Brazis P., Rabanal R.M., Fondevila D., Puigdemont A. 2014. Establishment and characterisation an of equine skin-equivalent model. Veterinary Dermatology, 25: 475–e77. doi:10.1111/vde.12134 DOI: https://doi.org/10.1111/vde.12134

FAOSTAT. 2013. Production/Live Animals. http://faostat3.fao.org/browse/Q/QA/E (16. Oct. 2015)

Freeman A.E., Igel H.J., Herrman B.J., Kleinfeld K.L. 1976. Growth and characterization of human skin ephitelial cell cultures. In vitro, 12: 352–362. doi:10.1007/BF02796313 DOI: https://doi.org/10.1007/BF02796313

Guo A., Jahoda C.A.B. 2009. An improved method for homan keratinocyte culture from skin explants: Cell expansion is linked to markers of activated progenitor cells. Experimental Dermatology, 18: 720–726. doi:10.1111/j.1600-0625.2009.00900.x DOI: https://doi.org/10.1111/j.1600-0625.2009.00900.x

Mendez M.G., Kojima, S.I., Goldman, R.D. 2010. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. The FASEB Journal, 24, 6: 1838–1851. doi:10.1096/fj.09-151639 DOI: https://doi.org/10.1096/fj.09-151639

Nagy K., Sung H.K., Zhang P., Laflamme S., Vincent P., Agha-Mohammadi S., Woltjen K., Monetti C., Michael I.P., Smith L.C., Nagy A. 2011. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Reviews, 7: 693–702. doi:10.1007/s12015-011-9239-5 DOI: https://doi.org/10.1007/s12015-011-9239-5

Nobusawa A., Sano T., Negishi A., Yokoo S., Tetsunari O. 2014. Immunohistochemical staining patterns of cytokeratins 13, and 17 in oral epithelial dysplasia including orthokeratotic dysplasia. Pathology International, 64: 20–27. doi:10.1111/pin.12125 DOI: https://doi.org/10.1111/pin.12125

Orazizadeh M., Hashemitabar M., Bahramzadeh S., Dehbashi F.N., Saremy S. 2015. Comparison of the enzymatic and explant methods for the culture of keratinocytes isolated from human foreskin. Biomedical Reports, 3, 3: 304–308 DOI: https://doi.org/10.3892/br.2015.442

Seltenhammer M.H., Heere-Ress E., Brandt S., Druml T., Jansen B., Pehamberger H., Niebauer G.W. 2004. Comparative histopathology of grey-horse-melanoma and human malignant melanoma. Pigment Cell Research, 17: 674–81. doi:10.1111/j.1600-0749.2004.00192.x DOI: https://doi.org/10.1111/j.1600-0749.2004.00192.x

Visser M.B., Pollitt C.C. 2010. Characterization of extracellular matrix macromolecules in primary cultures of equine keratinocytes. BMC Veterinary Research, 6, 16: 1–8. doi:10.1186/1746-6148-6-16 DOI: https://doi.org/10.1186/1746-6148-6-16

Witte R.P., Kao W.J. 2004. Keratinocyte-fibroblast paracrine interaction: the effects of substrate and culture condition. Biomaterials, 26: 3673–3682. doi:10.1016/j.biomaterials.2004.09.054 DOI: https://doi.org/10.1016/j.biomaterials.2004.09.054

Wunn D., Wardrop K.J., Meyers K., Kramer J., Ragle C. 1999. Culture and characterisation of equine terminal arch endotelial cells and hoof keratinocytes. American Journal of Veterinary Research, 60, 1: 128–132

Downloads

Published

28. 12. 2015

Issue

Section

Animal Science section

How to Cite

OGOREVC, J., LAPANJA, T., POKLUKAR, K., TOMINŠEK, N., & DOVČ, P. (2015). Establishment of primary keratinocyte culture from horse tissue biopsates. Acta Agriculturae Slovenica, 106(2), 87–91. https://doi.org/10.14720/aas.2015.106.2.3

Most read articles by the same author(s)

1 2 3 > >>