Yield and its attributes responses of drought tolerant upland ‘NERICA’ rice to different nutrient supplying treatments in rainforest transitory agroecology

Authors

  • Olalekan Suleiman Sakariyawo Federal University of Agriculture, Abeokuta, Nigeria
  • Mufutau ATAYESE Federal University of Agriculture, Abeokuta, Nigeria
  • Kehinde OKELEYE Federal University of Agriculture, Abeokuta, Nigeria
  • Abimbola BABALOLA Department of Soil Science and Land Management, FUNAAB, P.M.B. 2240, Alabata, Ogun State, Nigeria
  • Idowu ADEGOKE Federal University of Agriculture, Abeokuta, Nigeria
  • Michael DARE Department of Soil Science and Land Management, FUNAAB, P.M.B. 2240, Alabata, Ogun State, Nigeria
  • Paul SOREMI Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta (FUNAAB), P.M.B. 2240.Alabata, Ogun State, Nigeria
  • Sunday ADIGBO Institute of Food Security, Environmental Resources and Agricultural Research (IFSERAR), FUNAAB, Nigeria

DOI:

https://doi.org/10.14720/aas.2017.109.1.02

Keywords:

arbuscular mycorrhizae, rainforest transitory agroecology, root colonization, reproductive growth

Abstract

A screen house trial was conducted to evaluate reproductive growth responses of drought tolerant upland rice cultivars (NERICAs 1-4, WAB 56-104 and Moroberekan) to arbuscular mycorrhizal (AMF) inoculation under water deficit. A field trial was organized in randomized complete block test with three replicates, conducted in the late cropping season of 2012. We evaluated upland rice cultivars to different nutrient sources (AMF, AMF + 60 kg N ha-1 + 30 kg K ha-1, 60 kg N ha-1+ 30 kg K ha-1 and control). In the screen house inoculated rice had higher (P < 0.05) grain yield plant-1 (19.29 g plant-1) and its attributes than non-inoculated, except number of grain per panicle (108). On the field combination of AMF + 60 kg N ha-1 + 30 kg K ha-1 produced higher (P < 0.05) reproductive growth. Varietal variability (P < 0.05) was observed on AM colonisation and reproductive growth in both trials, with ‘NERICA 2’was the most promising cultivar under tested agroecology condition.

Author Biographies

  • Olalekan Suleiman Sakariyawo, Federal University of Agriculture, Abeokuta, Nigeria

    Department of Pnat Physiology and Crop Production

    Senior Lecturer

  • Mufutau ATAYESE, Federal University of Agriculture, Abeokuta, Nigeria
    Department of Pnat Physiology and Crop Production
  • Kehinde OKELEYE, Federal University of Agriculture, Abeokuta, Nigeria
    Department of Pnat Physiology and Crop Production
  • Idowu ADEGOKE, Federal University of Agriculture, Abeokuta, Nigeria
    Department of Pnat Physiology and Crop Production

References

Abbott, L. K., Robson, A. D., Boer, G. de. (1984). The effect of phosphorus on the formation of hyphae in soil by vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytologist, 97(3), 437–446. Doi: 10.1111/j.1469-8137.1984.tb03609.x

Adepeju, J., Adetunji, M., Ige, D. (2015). Soil-test data interpretation and fertiliser recommendation. In Soil fertility and crop nutrition (pp. 428–452). Ringroad, Ibadan: Jumak Publishers.

Allison, L., Bollen, W. B., Moodie, C. D. (1965). Total carbon. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilanb), 1346–1366.

Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3–42. Doi: 10.1007/s005720100097

Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84(4), 373–381. Doi: 10.4141/S04-002

Awotoye, O. O., Atayese, M. O., Osonubi, O., Mulongoy, K., Okali, D. U. U. (1992). Response of some tropical nitrogen-fixing woody legumes to drought and inoculation with mycorrhiza. Biological Nitrogen Fixation and Sustainability of Tropical Agriculture. K. Mulongoy, M. Gueye and DSC Spencer (eds.) Pp, 67–75.

Azcón, R., Marin, A. D., Barea, J. M. (1978). Comparative role of phosphate in soil or inside the host on the formation and effects of endomycorrhiza. Plant and Soil, 49(3), 561–567. Doi: 10.1007/BF02183281

Boonjung, H., & Fukai, S. (1996). Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield. Field Crops Research, 48(1), 47–55. Doi: 10.1016/0378-4290(96)00039-1

Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464–465. Doi: 10.2134/agronj1962.00021962005400050028x

Boyer, L. R., Brain, P., Xu, X.M., Jeffries, P. (2014). Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza, 25(3), 215–227. Doi: 10.1007/s00572-014-0603-6

Bray, E. A. (1997). Plant responses to water deficit. Trends in Plant Science, 2(2), 48–54. Doi: 10.1016/S1360-1385(97)82562-9

Defoer, T., Wopereis, M. C., Jones, M., Lancon, F., Erenstein, O., Guei, R. (2004). Rice-based production systems for food security and poverty alleviation in sub-Sahara Africa. IRC Newsletter, 53, 85–96.

Epstein, E. (1972). Mineral nutrition of plants: principles and perspectives., 412pp.

Fjelde, H., von Uexkull, N. (2012). Climate triggers: Rainfall anomalies, vulnerability and communal conflict in Sub-Saharan Africa. Political Geography, 31(7), 444–453. Doi: 10.1016/j.polgeo.2012.08.004

Franson, R. L., Brown, M. S., Bethlenfalvay, G. J. (1991). The Glycine-Glomus-Bradyrhizobium symbiosis. XI. Nodule gas exchange and efficiency as a function of soil and root water status in mycorrhizal soybean. Physiologia Plantarum, 83(3), 476–482. Doi: 10.1111/j.1399-3054.1991.tb00123.x

Furlan, V., Bernier-Cardou, M. (1989). Effects of N, P, and K on formation of vesicular-arbuscular mycorrhizae, growth and mineral content of onion. Plant and Soil, 113(2), 167–174. Doi: 10.1007/BF02280177

Giovannetti, M., Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489–500. Doi: 10.1111/j.1469-8137.1980.tb04556.x

Hayman, D. S., Johnson, A. M., Ruddlesdin, I. (1975). The influence of phosphate and crop species on Endogone spores and vesicular-arbuscular mycorrhiza under field conditions.Plant and Soil, 43(1-3), 489–495. Doi: 10.1007/BF01928510

Hepper, C. M. (1983). The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytologist, 93(3), 389–399. Doi: 10.1111/j.1469-8137.1983.tb03439.x

Hoagland, D. R., Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2nded.), 32 pp.

International Rice Research Institute. (2002). Standard Evaluation System. Manila, Philippines: IRRI.

Jackson, M. (1962). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt, Ltd.

Jayne, B., Quigley, M. (2013). Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza, 24(2), 109–119. Doi: 10.1007/s00572-013-0515-x

Jensen, A., Jakobsen, I. (1980). The occrrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertilizer treatments. Plant and Soil, 55(3), 403–414. Doi: 10.1007/BF02182701

Jones, M. P. (1997). Interspecific hybridization: progress and prospects. WARDA.

Jones, M. P., Dingkuhn, M., Aluko, G. K., Semon, M.,. (1997). Interspecific Oryza sativa L. x O. glaberrima Steud. progenies in upland rice improvement. Euphytica, 94(2), 237–246. Doi: 10.1023/A:1002969932224

Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M., Giller, K. E. (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biology and Biochemistry, 41(6), 1233–1244. Doi: 10.1016/j.soilbio.2009.03.005

Koide, R. T. (1993). Physiology of the mycorrhizal plant. Advances in Plant Pathology, 9, 33–54.

Koide, R. T., Robichaux, R. H., Morse, S. R., & Smith, C. M. (1989). Plant water status, hydraulic resistance and capacitance. In Plant physiological ecology (pp. 161–183). Springer. Doi: 10.1007/978-94-009-2221-1_9

Liebhardt, W. (1968). Effect of potassium on carbohydrate metabolism and translocation. In V. Kilmer, S. Younts, & N. Brady (Eds.), The role of potassium in Agriculture (pp. 147–164). Madison, Wisconsin: ASA-CSSA-SSSA.

Linares, O. F. (2002). African rice (Oryza glaberrima): History and future potential. Proceedings of the National Academy of Sciences, 99(25), 16360–16365. Doi: 10.1073/pnas.252604599

Liu, A., Hamel, C., Hamilton, R. I., Ma, B. L., Smith, D. L. (2000). Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza, 9(6), 331–336. Doi: 10.1007/s005720050277

Liu, J. X., Liao, D. Q., Yang, X. E., Li, Z. C., Bennett, J. (2006). Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. Field Crops Research, 97(1), 87–100. Doi: 10.1016/j.fcr.2005.08.019

McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 495–501. Doi: 10.1111/j.1469-8137.1990.tb00476.x

McLean, E. (1982). Soil pH and lime requirements. In: A. Page, R. Miller, and R. Keneey (Eds.), Methods of soil analysis (2nded., pp. 199–223). Agronomy Society of America.

Miller, R. M., Jastrow, J. D. (1994). Vesicular-arbuscular mycorrhizae and biogeochemical cycling. Mycorrhizae and Plant Health. APS Press, The American Phytopathological Society, St. Paul, Minnesota, 189–213.

Murphy, J., Riley, J. P. (1952). A modified single solution method for determination of phosphate uptake by rye. Soil Science Society of America Proceedings. 48, 31–36.

Noyd, R. (1965). Ecological interactions between native prairie grass and AMF in the reclamation of ore tailing. University of Minnesota, St Paul, MN.

Oikeh, S. O., Nwilene, F. E., Agunbiade, T. A., Oladimeji, O., Ajayi, O., Mande, S., Samejima, H. (2008). Growing upland rice: a production handbook. Africa Rice Center (WARDA). http://www.fao.org/fileadmin/user_upload/ivc/docs/uplandrice.pdf

Olsen, S., Dean, L. (1965). Methods of Soil Analysis. In: C. Black (Ed.), Phosphorus (Vol. 9, pp. 1035–1049). Madison, WI: American Society of Agronomy Inc.

Osonubi, O., Bakare, O. N., Mulongoy, K. (1992). Interactions between drought stress and vesicular-arbuscular mycorrhiza on the growth of Faidherbia albida (syn. Acacia albida) and Acacia nilotica in sterile and non-sterile soils. Biology and Fertility of Soils, 14(3), 159–165. Doi: 10.1007/BF00346056

Phillips, J. M., Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158–IN18. Doi: 10.1016/S0007-1536(70)80110-3

Rajeshkannan, V., Sumathi, C. S., Manian, S. (2009). Arbuscular mycorrhizal fungi colonization in upland rice as influenced by agrochemical application. Rice Science, 16(4), 307–313. Doi: 10.1016/S1672-6308(08)60095-5

Rapparini, F., Peñuelas, J. (2014). Mycorrhizal Fungi to Alleviate Drought Stress on Plant Growth. In M. Miransari (Ed.), Use of Microbes for the Alleviation of Soil Stresses, Volume 1 (pp. 21–42). Springer New York. Doi: 10.1007/978-1-4614-9466-9_2

Ratnayake, M., Leonard, R. T., Menge, J. A. (1978). Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytologist, 81(3), 543–552. Doi: 10.1111/j.1469-8137.1978.tb01627.x

Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 84(4), 355–363. Doi: 10.4141/S04-003

Robertson, M., & Holland, J. (2004). Production risk of canola in the semi-arid tropics of Australia. Australian Journal of Agricultural Research, 55, 526–538. Doi: 10.1071/AR03219

Smith, S., Read, D. (2008). Mycorrhizal Symbiosis, Third Edition (3rd edition). Amsterdam; Boston: Academic Press.

Squire, G. (1990). The physiology of tropical crop production. Wallingford, UK: CABI.

Sumner, M. E., Farina, M. P. (1986). Phosphorus interactions with other nutrients and lime in field cropping systems. In Advances in soil science (pp. 201–236). Springer. Doi: 10.1007/978-1-4613-8660-5_5

Sylvia, D. M., Neal, L. H. (1990). Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytologist, 303–310. Doi: 10.1111/j.1469-8137.1990.tb00456.x

Treseder, K. K., Allen, M. F. (2002). Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytologist, 155(3), 507–515. Doi: 10.1046/j.1469-8137.2002.00470.x

Trolldenier, G. (1972). L’influence de la nutrition potassique de haricots nains (Phaseolus vulgaris var. nanus) sur l’exudation de substances organiques marquees au 14C, le nombre de bacteries rhizospheriques et la respiration des racines. Review of Ecological Biology, 9, 595–603.

Walkley, A., Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. Doi: 10.1097/00010694-193401000-00003

Yoshida, S., & Hasegawa, S. (1982). The rice root system: its development and function. Drought Resistance in Crops with Emphasis on Rice, 10.

Downloads

Published

24. 01. 2017

Issue

Section

Agronomy section

How to Cite

Sakariyawo, O. S., ATAYESE, M., OKELEYE, K., BABALOLA, A., ADEGOKE, I., DARE, M., SOREMI, P., & ADIGBO, S. (2017). Yield and its attributes responses of drought tolerant upland ‘NERICA’ rice to different nutrient supplying treatments in rainforest transitory agroecology. Acta Agriculturae Slovenica, 109(1), 15-27. https://doi.org/10.14720/aas.2017.109.1.02