The effects of silicon and titanium on safflower (Carthamus tinctorius L.) growth under moisture deficit condition

Authors

  • Mohsen Janmohammadi University of Maragheh, Iran
  • Nasrin Mohamadi University of Maragheh, Ira
  • Fariborz SHEKARI University of Maragheh, Iran
  • Amin ABBASI University of Maragheh, Iran
  • Mohammad ESMAILPOUR Department of Medicinal and Aromatic Plants, Jahrom university, Jahrom, Iran

DOI:

https://doi.org/10.14720/aas.2017.109.2.27

Keywords:

safflower, agronomic traits, foliar spraying, nano-particles, principal component analysis, semi-arid region

Abstract

Safflower is one of important crop in semi-arid regions of the world, where the precipitations are limited. In order to investigate the effect of foliar spray of nano-silicon dioxide (10 and 20 mM) and nano titanium dioxide (25 and 50 mM) and water-deficit stress (irrigation after 110 mm evaporation) on growth parameters and yield components of spring safflower a field experiment was carried out at the highland semi-arid region, in, North West of Iran. Water deficit stress significantly reduced morpho-physiological traits such as ground cover, canopy width, leaf fresh mass, leaf are and plant height) as well as yield components (e.g. capitulum diameter, seed mass and seed number per capitulum). However, the plants grown under water deficit condition showed the higher harvest index than well irrigated plants. Comparison of the foliar treatments showed that the both nano-particles (silicon and titanium) improved the plant growth and yield components over the control. However, the effect of nano-silicon was more prominent than titanium. The highest amount of seed oil was recorded under well irrigated condition (irrigation after 60 mm evaporation) with foliar application of nano-titanium. The percentage of palmitic acid, arachidic acid and myristic acid in seed increased by nano-titanium application. Altogether, principal component analysis indicated that spray of 10 mM nano silicon dioxide was best foliar treatments under all moisture regimes.

References

Asadzade, N., Moosavi, S. G., Seghatoleslami, M. J. (2015). Effect of low irrigation and Zn and SiO2 nano-fertilizers and conventional fertilizers on morphophysiological traits and seed yield of sunflower. Biological Forum, 7(1), 357-364.

Asli, S., Neumann, P.M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 32, 577-584. doi:10.1111/j.1365-3040.2009.01952.x

Darinkaboud, B. A., GharibiAsl, S. (2016). The oil and protein content of Isfahahn’s safflower seed in different periods of irrigation, levels of humic acid and superabsorbent. International Journal of Life Sciences and Pharma Research, Special Issue, 56-63.

Eneji, A. E., Inanaga, S., Muranaka, S., Li, J., Hattori, T., An, P., Tsuji, W. (2008). Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilisers. Journal of Plant Nutrition, 31, 355-365. doi:10.1080/01904160801894913

Fatichi, S., Leuzinger, S., Körner, C. (2014). Moving beyond photosynthesis: from carbon source to sink‐driven vegetation modeling. New Phytologist, 201(4), 1086-1095. doi:10.1111/nph.12614

Fauteux, F., Remus-Borel, W., Menzies, J. G., Bélanger, R. R. (2005). Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letter, 249, 1–6. doi:10.1016/j.femsle.2005.06.034

Frazier, T. P., Burklew, C. E., Zhang, B. (2013). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Functional & Integrative Genomics, Available online, doi:10.1007/s10142-013-0341-4

Haghighati-Malek, A., Ferri, F. (2014). Effects of nitrogen and phosphorus fertilizers on safflower yield in dry lands condition. International Journal of Research in Agricultural Sciences, 1, 2348-3997.

Hattori, T., Inanaga, H., Araki, H., An, P., Morita, S., Luxova, M., Lux A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123, 459-466. doi:10.1111/j.1399-3054.2005.00481.x

Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105 (1-3), 269-279. doi:10.1385/BTER:105:1-3:269

Hussain, M. I., Lyra, D. A., Farooq, M., Nikoloudakis, N., Khalid, N. (2016). Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 36 (1), 4-13. doi:10.1007/s13593-015-0344-8

Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., Dashti, S. (2016a). Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica, 107(2), 265-276. doi:10.14720/aas.2016.107.2.23

Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., Ion, V. (2016b). Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Botanica Lithuanica, 22(1), 53-64. doi: doi:10.1515/botlit-2016-0005

Karimi, J., Mohsenzadeh, S. (2016). Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russian Journal of Plant Physiology, 63(1), 119-123. doi:10.1134/S1021443716010106

Kaya, C., Tuna, L., Higgs, D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition, 29(8), 1469-1480. doi:10.1080/01904160600837238

Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protection, 35, 64-70. doi:10.1016/j.cropro.2012.01.007

Lei, Z., Mingyu, S., Xiao, W., Chao, L., Chunxiang, Q., Liang, C., Fashui, H. (2007). Effects of nano-anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of spinach. Biological Trace Element Research, 120 (1-3), 273-283. doi:10.1007/s12011-007-8025-3

Lei Z., Mingyu S., Xiao W., Chao L., Chunxiang Q., Liang C., Hao H, Xiaoqing L, Fashui, H. 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research, 121(1), 69-79. doi:10.1007/s12011-007-8028-0

Liu, R., Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131-139. doi:10.1016/j.scitotenv.2015.01.104

Ma, J. F., Miyake, Y., Takahashi, E. 2001. Silicon as a beneficial element for crop plants, in Silicon in Agriculture, (Eds.) New York, NY: Elsevier Science Publishing, 17–39. doi:10.1016/S0928-3420(01)80006-9

Ma, J. F., Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397. doi:10.1016/j.tplants.2006.06.007

Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 11-18. doi: 10.1080/00380768.2004.

Mandeh, M., Omidi, M., Rahaie, M. (2012). In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgareL.) tissue culture. Biological trace element research, 150(1-3), 376-380. doi:10.1007/s12011-012-9480-z

Mastronardi, E., Tsae, P., Zhang, X., Monreal, C., DeRosa, M. C. (2015). Strategic role of nanotechnology in fertilizers: potential and limitations. In Nanotechnologies in Food and Agriculture (pp. 25-67). Springer International Publishing. Switzerland, Cham. doi:10.1007/978-3-319-14024-7_2

Morteza, E., Moaveni, P., Farahani, H. A., Kiyani, M. (2013). Study of photosynthetic pigments changes of maize (Zea mays L.) under nano Tio2 spraying at various growth stages. SpringerPlus, 2(1), 1-5. doi.10.1186/2193-1801-2-247

Murungweni, C., Wijk, M. T., Smaling, E. M. A., Giller, K. E. (2016). Climate-smart crop production in semi-arid areas through increased knowledge of varieties, environment and management factors. Nutrient Cycling in Agroecosystems, 105(3), 183-197. doi:10.1007/s10705-015-9695-4

Pei, Z.F., Ming, D. F., Liu, D., Wan, G. L., Geng, X. X., Gong H. J., Zhou, W. J. (2010). Silicon improves the tolerance of water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation, 29, 106-115. doi:10.1007/s00344-009-9120-9

Pessarakli, M. (2014). Handbook of plant and crop physiology. CRC Press. United State, Florida.

Rudolphi, S., Becker, H. C., Schierholt, A., von Witzke-Ehbrecht, S. (2012). Improved estimation of oil, linoleic and oleic acid and seed hull fractions in safflower by NIRS. Journal of the American Oil Chemists' Society, 89(3), 363-369. doi:10.1007/s11746-011-1920-y

Sahebi, M., Hanafi, M. M., Siti Nor Akmar, A., Rafii, M. Y., Azizi, P., Tengoua, F., Mayzaitul Azwa, F., Shabanimofrad, M. (2015). Importance of silicon and mechanisms of bio-silica formation in plants. BioMed research international, 1-16. doi:10.1155/2015/396010

Sabaghnia, N., Ahadnezhad, A., Janmohammdi, M. (2015). Genetic variation in garden cress (Lepidium sativum L.) germplasm as assessed by some morphological traits. Genetic Resources and Crop Evolution, 5(62): 733-745. doi:10.1007/s10722-014-0192-4

Sangakkara, H. R., Hartwig, U. A., Nosberger, J. (1996). Response of root branching and shoot water potential of Phaeseolus valgaris L. to soil moisture and fertilizer potassium. Journal of Agronomy and Crop Science, 177, 165–173. doi:10.1111/j.1439-037X.1996.tb00234.x

Shahrokhnia, M. H., Sepaskhah, A. R. (2017). Physiologic and agronomic traits in safflower under various irrigation strategies, planting methods and nitrogen fertilization. Industrial Crops and Products, 95, 126-139. doi:10.1016/j.indcrop.2016.10.021

Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., Gong, H. (2016). Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L. Frontiers in plant science, 7. doi:10.3389/fpls.2016.00196

UN (United Nations Department of Economic and Social Affairs, Population Division), (2013). World Population Prospects: the 2012 Revision.

Yang, F., Hong, F., You, W., Liu C., Gao, F., Wu, C., Yang, P. (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110 (2), 179-190. doi:10.1385/BTER:110:2:179

Zheng, L., Hong, F., Lu, S., Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research. 104, 83e91. doi:10.1385/BTER:104:1:083

Downloads

Published

26. 09. 2017

Issue

Section

Agronomy section

How to Cite

Janmohammadi, M., Mohamadi, N., SHEKARI, F., ABBASI, A., & ESMAILPOUR, M. (2017). The effects of silicon and titanium on safflower (Carthamus tinctorius L.) growth under moisture deficit condition. Acta Agriculturae Slovenica, 109(2), 443–455. https://doi.org/10.14720/aas.2017.109.2.27

Similar Articles

1-10 of 619

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)