UVA + B treatment affects antioxidant system and phytochemicals of parsley plant under different concentrations of Zn

Authors

  • Masoumeh Abedini Payame Noor University, Faculty of Basic Sciences, Department of Biology, Iran
  • Shirwan Malaei Payame Noor University, Faculty of Basic Sciences, Department of Biology, Iran
  • Behrokh Daei-Hassani Payame Noor University, Faculty of Basic Sciences, Department of Biology, Iran

DOI:

https://doi.org/10.14720/aas.2017.109.2.08

Keywords:

antioxidant enzymes, parsley, photochemicals, UVA B, Zn

Abstract

Decline in ozone layer that followed by enhanced solar UV radiation is a limiting factor for some plants. In this study the effect of UVA+UVB radiation on parsley plant was studied hydroponically at different concentrations of Zn (1.5 and 6.5 µm). UV radiation at both concentrations of Zn, slightly decreased the plant growth and significantly increased the carotenoids, flavonoids, total phenols and H2O2 contents, but had no effect on chlorophylls content. At concentration of 1.5 µm of Zn, UV radiation caused significant increases in the MDA and anthocyanin contents and the activities of POD and CAT enzymes, but decreased the soluble sugars and protein contents. At concentration of 6.5 µm of Zn, UV radiation caused significant increases in the CAT activity, but had no significant effect on other parameters. Results suggest that parsley plant tolerates UVA+UVB radiation particularly at concentration of 6.5 µmof Zn.

References

Alloway, B. J. (2008). Zinc in Soils and Crop Nutrition. Brussels, Belgium and Paris, IZA & IFA.

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Review of Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3

Cakmak, I. (2000). Tansley review no. 111. New Phytologist, 146(2), 185-205. doi:10.1046/j.1469-8137.2000.00630.x

Cakmak, I., Marschner, H. (1988). Increase in membrane permeability and exudation in roots of zinc deficient plants. Journal of Plant Physiology, 132(3), 356-361. doi:10.1016/S0176-1617(88)80120-2

Casano, L., Gomez, L., Lascano, C., Trippi, V. (1997). Inactivation and degradation of Cu/Zn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant and Cell Physiology, 38(4), 433-440. doi:10.1093/oxfordjournals.pcp.a029186

Chance, B., Maehly, A. C. (1955). Assay of catalases and peroxidases, Methods in Enzymology. New York, NY: Academic Press.

Chawla, S., Jain, S., Jain, V. (2013). Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology, 22(1), 27-34. doi:10.1007/s13562-012-0107-4

Cooper, A. (1988). 1. The system. 2. Operation of the system. In G. Books (ed), The ABC of Nutrient Film Technique (pp. 3-123). England, UK: Intl Specialized Book Service Inc.

Costa, H., Gallego, S. M., Tomaro, M. A. L. (2002). Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons.Plant Science, 162(6), 939-945. doi:10.1016/S0168-9452(02)00051-1

Czégény, G., Mátai,A., Hideg,É.. (2016). UV-B effects on leaves-oxidative stress and acclimation in controlled environments. Plant Science, 248, 57-63. doi:10.1016/j.plantsci.2016.04.013

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers P. A., Smith, F. (1956). Colorometric method for determination of sugars and related substances. Anals of Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017

Eichholz, I., Huyskens-Keil, S., Keller, A., Ulrich, D., Kroh, L. W., Rohn, S. ( 2011). UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chemistry, 126(1), 60−64. doi:10.1016/j.foodchem.2010.10.071

Fasano, R., Gonzalez, N., Tosco, A., Piaz, F. D., Docimo, T., Serrano, R., Grillo, S., Leone, A., Inzé, D. (2014).Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and lowlevels of UV-B. Molecular Plant, 7(5), 773-791. doi:10.1093/mp/ssu002

Fedina, I., Hidema, J., Velitchkova, M., Georgieva, K., Nedeva, D. (2010). UV-B induced stress responses in three rice cultivars. Biologia Plantarum, 54(3), 571-574. doi:10.1007/s10535-010-0102-3

Fletcher, R. S., Kott, L. S. (1999). Phenolics and cold tolerance of Brassica napus. Plant Agriculture, 1, 1-5.

Hakala, K., Jauhiainen, L., Koskela, T., Käyhkö, P., Vorne, V. (2002). Sensitivity of crops to increased ultraviolet radiation in northern growing conditions. Journal of Agronomy and Crop Science, 188(1), 8-18. doi:10.1046/j.1439-037x.2002.00536.x

Harinasut, P., Poonsopa, D., Roengmongkol, K., Charoensataporn, R. (2003). Salinity effects on antioxidant enzymes in mulberry cultivar. ScienceAsia, 29, 109-113. doi:10.2306/scienceasia1513-1874.2003.29.109

Hassan, M. J., Zhang, G., Wu, F., Wei, K., Chen, Z. (2005). Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. Journal of Plant Nutrition and Soil Science, 168(2), 255-261. doi:10.1002/jpln.200420403

Heath, R. L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts, I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi:10.1016/0003-9861(68)90654-1

Kawano, T., Kawano, N., Muto, S., Lapeyrie, F. (2002). Retardation and inhibition of the cation-induced superoxide generation in BY-2 tobacco cell suspension culture by Zn2+ and Mn2+. Physiologia Plantarum, 114(3), 395–404. doi:10.1034/j.1399-3054.2002.1140309.x

Kim, B., Rodrigo, L. (2001). Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiology,126(3), 1105-1115. doi:10.1104/pp.126.3.1105

Levall, M., Bornman, J. F. (2006). Selection in vitro for UV-tolerant sugar beet (Beta vulgaris) somaclones. Physiologia Plantarum, 88(1), 37-43. doi:10.1111/j.1399-3054.1993.tb01757.x

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids, Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. doi:10.1016/0076-6879(87)48036-1

Mach, J. (2016). How plants take the bad with the good, conserved UV-B perception and signaling in Chlamydomonas. Plant Cell, 28(4), 825. doi:10.1105/tpc.16.00279

Mahdavian, K., Ghorbanli, M., Kalantari, K. M. (2008). The Effects of ultraviolet radiation on the contents of chlorophyll, flavonoid, anthocyanin and proline in Capsicum annuum L. Turkish Journal of Botany, 32, 25-33.

Michael, P. I., Krishnaswamy, M. (2014). Membrane damage and activity of antioxidant enzymes in response to zinc and high irradiance stress in cowpea plant. International Journal of Current Research and Academic Review, 2(10), 112-128.

Morshedi, A., Farahbakhsh, H. (2010). Effects of potassium and zinc on grain protein contents and yield of two wheat genotypes under soil and water salinity and alkalinity stresses. Plant Ecophysiology, 2, 67-72.

Nasibi, F., Kalantari, K. M. (2005). The effects of UV-A, UV-B and UV-C on protein and ascorbate content, lipid peroxidation and biosynthesis of screening compounds in brassica napus. Iranian journal of science and technology transaction a- science, 29(A1), 39-48.

Obinger, C., Maj, M., Nicholls, P., Loewen, P. (1997). Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase. Archives of Biochemistry and Biophysics, 342(1), 58-67. doi:10.1006/abbi.1997.9988

Ravindran, K. C., Indrajith, A., Pratheesh, P. V., Sanjiviraja, K., Balakrishnan, V. (2010). Effect of ultraviolet-B radiation on biochemical and antioxidant defense system in Indigofera tinctoria L. seedlings.International Journal of Engineering, Science and Technology, 2(5), 226-232. doi:10.4314/ijest.v2i5.60154

Reshmi, G. R., Rajalakshmi, R. (2012). Drought and UV stress response in Spilanthes acmellaMurr. (tooth-ache plant). Journal of Stress Physiology and Biochemistry, 8(4), 110-129.

Rizzini, L., Favory, J. J., Cloix, C., Faggionato, D., O'Hara, A., Kaiserli, E., Baumeister, R., et al. (2011). Perception of UV-B by the arabidopsis UVR8 protein. Science, 332(6025), 103–106. doi:10.1126/science.1200660

Saeidnejad, A. H., Kafi, M. (2013). Alleviative effects of Zinc on physiological properties and antioxidants activity of maize plants under salinity stress. International Journal of Agriculture and Crop Sciences, 5(5), 529-537.

Salama, H. M. H., Al-Watban, A. A., Al-Fughom, A. T. (2011). Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants. Saudi Journal of Biological Sciences, 18(1), 79-86. doi:10.1016/j.sjbs.2010.10.002

Smith, J. L., Burritt, D. J., Bannister, P. (2000). Shoot dry weight, chlorophyll and UV-B- absorbing compounds as indicators of a plant’s sensitivity to UV-B radiation. Annals of Botany, 86(6), 1057-1063. doi:10.1006/anbo.2000.1270

Tavallali, V., Rahemi, M., Eshghi, S., Kholdebarin, B., Ramezanian, A. (2010). Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. Badami) seedlings.

Turkish Journal of Agriculture and Forestry, 34(4), 349-359.

Toor, R. K., Savage, G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food Research International, 38(5), 487-494. doi:10.1016/j.foodres.2004.10.016

Tossi, V., Lamattina, L., Cassia, R. (2009). An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New phytologist, 181(4), 871-879. doi:10.1111/j.1469-8137.2008.02722.x

Ulm, R., Nagy, F. (2005). Signalling and gene regulation in response to ultraviolet light. Current Opinion in Plant Biology, 8(5), 477-482. doi:10.1016/j.pbi.2005.07.004

Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology, 64(1), 88–93. doi:10.1104/pp.64.1.88

Wei, Z. F., Luo, M., Zhao, C. J., Li, C. Y., Gu, C. B., Wang, W., Zu, Y. G., Efferth, T., Fu, Y. J. (2013). UV-induced changes of active components and antioxidant activity in Postharvest Pigeon Pea [Cajanus cajan (L.) Millsp.] Leaves. Journal of Agriculture and Food Chemistry, 61(6), 1165−117. doi:10.1021/jf304973f

Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics, 5(2), 60-67.

Winterbourn, C. C., McGrath, B. M., Carrell, R. W. (1976). Reactions involving superoxide and normal and unstable haemoglobins. The Biochemical Journal, 3(155), 493–50. doi:10.1042/bj1550493

Zlatev, S. Z., Lidon, F. J. C., Kaimakanova1, M. (2012). Plant physiological responses to UV-B radiation. Emirates Journal of Food Agriculture, 24(6), 481-501. doi:10.9755/ejfa.v24i6.481501

Zu, Y., Li, Y., Chen, J., Chen, H. (2004). Intraspecific responses in grain quality of 10wheat cultivars to enhanced UV-B radiation under field conditions. Journal of Photochemistry and Photobiology,74(2-3), 95–100. doi:10.1016/j.jphotobiol.2004.01.006

Downloads

Published

26. 09. 2017

Issue

Section

Agronomy section

How to Cite

Abedini, M., Malaei, S., & Daei-Hassani, B. (2017). UVA + B treatment affects antioxidant system and phytochemicals of parsley plant under different concentrations of Zn. Acta Agriculturae Slovenica, 109(2), 241–249. https://doi.org/10.14720/aas.2017.109.2.08

Similar Articles

1-10 of 394

You may also start an advanced similarity search for this article.