Changes in essential oil and morpho-physiological traits of tarragon (Artemisia dracuncalus L.) in responses to arbuscular mycorrhizal fungus, AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) inoculation under salinity

Authors

  • Amin Lamian Department of Horticulture Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
  • Hassanali Naghdi Badi Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
  • Ali Mehrafarin Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
  • Mehdi Seif Sahandi Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran

DOI:

https://doi.org/10.14720/aas.2017.109.2.06

Keywords:

arbuscular mycorrhizal fungi, Artemisia dracunculus L., electrical conductivity, essential oils, Glomus intraradices, methyl chavicol, morpho-physiological traits, salinity

Abstract

This study aimed to evaluate the arbuscular mycorrhizal fungi (AMF) (Glomus intraradices N.C. Schenck & G.S. Sm.) inoculation and salinity effect on qualitative and quantitative changes in tarragon yield. Treatments included inoculation, and non-inoculation of AMF, and five salinity levels of irrigation water (with the electrical conductivity of 0, 2, 4, 6, and 8 dS m-1). The results showed the plant height, SPAD value, number of leaves, dry mass of leaves and shoot per plant were reduced under salinity condition. The various levels of salinity decreased the content of tarragon essential oil and some its components consist of α-pinene, limonene, Z-ocimene, E-ocimene, and methyl chavicol while, it increased the content of bornyl acetate, eugenol, methyl eugenol, caryophyllene, germacrene, and α-farnesene. AMF inoculation without salinity had the greatest positive effect on the evaluated traits of tarragon. Also, it improved the morpho-physiological traits under salinity due to alleviation of the harmful effects of salinity. Although the essential oil content was reduced with the AMF inoculation, the methyl chavicol amount was increased by the AMF inoculation under salinity condition.

Author Biographies

  • Amin Lamian, Department of Horticulture Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
    Department of Horticulture Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
  • Hassanali Naghdi Badi, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
    Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
  • Ali Mehrafarin, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
    Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
  • Mehdi Seif Sahandi, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
    Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran

References

Adams, R.P. (2001). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing, Carol Stream, IL, USA.

Agarwal, S., and Shaheen, R. (2007). Stimulation of antioxidant system and lipid peroxidation by abiotic stress in leaves of Momordica charantia. Brazilian Journal of Plant Physiology, 19(2), 149-161. http://dx.doi.org/10.1590/S1677-04202007000200007

Ahmadi-Khoei, M., Shabani, L., and Bagheri, S. (2013). Assay of phenolic compounds and essential oils in mycorrhizal mint genotypes. Iranian Journal of Plant Biology, 5(18), 81-93.

Amira, M.S., and Qados, A. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10(1), 7-15. DOI:10.1016/j.jssas.2010.06.002

Ashraf, M., and Orooj, A. (2006). Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). Journal of Arid Environments, 64 (2), 209-220. DOI:10.1016/j.jaridenv.2005.04.015

Aslam, M., Qureshi, R.H., Ahmad, N.A. (1993). Rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil, 150, 99-107. DOI: 10.1007/BF00779180

Auge, R.M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42. DOI: 10.1007/s005720100097

Aziz, E.E., and Craker Al-Amier, H.L.E. (2008). Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. Journal of Herbs, Spices & Medicinal Plants, 14 (1 & 2), 77 – 87. DOI:10.1080/10496470802341375

Baatour, O., Kaddour, R., Aidi Wannes, W., Lachaa, M., and Marzouk, B. (2010). Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiology Plant, 32, 45–51. DOI: 10.1007/s11738-009-0374-4

Belaqziz, R., Romane, A., and Abbad, A. (2009). Salt stress effects on germination, growth and essential oil content of an endemic thyme species in Morocco (Thymus maroccanus Ball.). J. Applied Science Research, 5 (7), 858-863.

Ben Khaled, L., Gomes, A.M., Ouarraqi, E.M., and Oihabi, A. (2003). Physiology and biochemical resposes to salt stress of mycorrhizal and/or nodulated clover seedling (Trifolium alexandrinum L.). Agronomy, 23, 571-580. DOI: 10.1051/agro:2003037

Bernstein, N., Kravchik, M., and Dudai, N. (2010). Salinity-induced changes in essential oil, pigments and salts accumulation in sweet basil (Osimum basilicum) in relation to alteration of morphological development. Annals of Applied Biology, 156(2), 167-177. DOI: 10.1111/j.1744-7348.2009.00376.x

British Pharmacopoeia. (1988). Volume I. London. HMSO. p. A137-A138.

Carretero, C.L., Cantos, M., Garcia, J.L., Azcon, R. and Troncoso, A. (2008). Arbuscular-Mycorrhizal Contributes to Alleviation of Salt Damage in Cassava Clones. Journal of Plant Nutrition, 31, 959–971. DOI:10.1080/01904160802043296

Cho, K., Toler, H., Lee, J., Owenley, B., Stutz, J.C., Moore, J.L., Auge, R.M. (2006). Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J. Plant Physiology, 163, 517–528. DOI:10.1016/j.jplph.2005.05.003

Chopra, R.N., Nayar, S.L., and Chopra, I.C. (1986). Glossary of Indian Medicinal Plants (Including the Supplement). Council of Scientific and Industrial Research, New Delhi.

Dolataadian, A., Modrres sanavyi, S.A.M., and Ghanat, F. (2011). Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Notulae Scientia Biologicae, 3(1), 41-45.

Drazkiewicz, M. (2000). Chlorophyllase: occurrence, functions, mechanism of action, effects of external and internal factors. Photosynthesis, 30 (3), 321-331.

Dudareva, N., Picheresky, E., and Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiology, 134, 1893-1902. DOI: 10.1104/pp.104.049981

El-Amri, S.M., Al-Whaibi, M.H., Abdel-Fattah, G.M., and Siddiqui, M.H. (2013). Role of mycorrhizal fungi in tolerance of wheat genotypes to salt stress. African Journal of Microbiology Research, 7(14), 1286-1295. DOI: 10.5897/AJMR12.2332

Fan, H.F., Du, C.X., and Guo, S.R. (2013). Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environmental and Experimental Botany, 86, 52-59. DOI: 10.1016/j.envexpbot.2010.09.007

Fernandez-Lizarazo, J.C., Mosquera-Vasquez, T., Chaves, B., and Sarmiento, F. (2011). Phyllochron and differential growth between plants of French tarragon (Artemisia dracunculus L.) with different source of propagation. Agronomía Colombiana, 29(3), 387-397.

Gini, B., Kapoor, R., and Mukerji, K.G. (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils, 38, 170-175. DOI: 10.1007/s00374-003-0636-z

Greenway, H., and Munns, R. (1980). Mechanisms of salt tolerance in non halophytes. Annual Review of Plant Biology, 31, 149-190. DOI: 10.1146/annurev.pp.31.060180.001053

Gupta, N., and Rutaray, S. (2005). Growth and development of AM fungi and maize under salt and acid stress. Acta Agricultural Scandinavia, Section B, Soil and Plant Science, 55, 151-157. DOI:10.1080/09064710510008694

Hasegawa, P.M., Bressan, R.A., Zhu, J.K., and Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 463–499. DOI: 10.1146/annurev.arplant.51.1.463

Ho, I. (1987). Vesicular-arbuscular mycorrhizae of halophytic grasses in the Alvord desert of Oregon. Northwest Science,61, 148–151.

Hoshida, H., Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., and Takabe, T. (2000). Enhanced tolerance to salt stress in transgenic rice that over expresses chloroplast glutamine synthetase. Plant Molecular Biology, 43, 103-111. DOI: 10.1023/A:1006408712416

Jacoby, B. (1994). Mechanisms involved in salt tolerance by plants. In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker, New York, pp. 97–123.

Jaleel, C.A., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R., and Panneerselvam, R. (2007). Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South African Journal of Botany, 73, 190–195. DOI:10.1016/j.sajb.2006.11.001

Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., and Barea, J.M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1-16. DOI: 10.1007/s00374-002-0546-5

Kapoor, R., Giri, B., and Mukerji, G. (2002). Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. Journal of the Science of Foot and Agriculture, 82, 339-342. DOI: 10.1002/jsfa.1039

Kuznetsov, V.V., and Shevyakova, N.I. (1997). Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiologia Plantarum, 100, 320–326. DOI: 10.1111/j.1399-3054.1997.tb04789.x

Levitt, J. (1980). Salt and ion stresses in: Responses of plant to environmental stress. Academic Press, INC. 2, 365-406.

Marschner, H., and Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant Soil, 159, 89-102. DOI: 10.1007/BF00000098

Mukhtar balal, R., Ashraf, M.Y., Khan, M.M., Jaskani, M.J., and Ashfaq, M. (2011). Influence of salt stress on growth and biochemical parameters of citrus rootstichs. Pakistan Journal of Botany, 43(4), 2135-2141.

Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant cell environment. 16, 15-24. DOI: 10.1111/j.1365-3040.1993.tb00840.x

Obolskiy, D., Pischel, I., Feistel, B., Glotov, N., and Heinrich, M. (2011). Artemisia dracunculus L. (tarragon): a critical review of its traditional use, chemical composition, pharmacology, and safety. Journal of Agricultural and Food Chemistry, 59(21), 11367-84. DOI: 10.1021/jf202277w

Parida, A.K., and Das, A.B. (2005). Salt tolerance and salinity effects on plants. Ecotoxicology and Environmental Safety, 60(3), 324-349. DOI:10.1016/j.ecoenv.2004.06.010

Porras-Soriano, A., Soriano-Martin, M.L., Porras-Piedra, A., and Azcon, R. (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J. Plant Physiology, 166, 1350-59. DOI:10.1016/j.jplph.2009.02.010

Rabie, G.H., and Almadini, A.M. (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotecnology, 4(3), 210-222.

Reddy, M.P., and Vora, A.B. (2005). Salinity induced changes in pigment composition and chlorophyllase activity of chelidonium. Indian Journal Plant Physiology, 29(4), 331-334.

Ruiz-Lozano, J.M., Azcon, R. (2000). Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza, 10, 137-143. DOI: 10.1007/s005720000075

Ruiz-Lozano, J.M., Azcon, R., and Gomes, M. (1996). Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767-772. DOI: 10.1111/j.1399-3054.1996.tb06683.x

Safarnejad, A., Salami, M.R., and Hamidi, H. (2006). Morphological characterization of medicinal plants (Plantago ovata, Plantago psyllium) in response to salt stress. Pajouhesh & Sazandegi, 75, 152-160.

Saleh, M., and Al-Garni, S. (2006). Increased heavy metal tolerance of cowpea plant by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. African Journal of Biotechnology, 5(2), 133-142.

Sankar, B., Jaleel, C.A., Manivannan, P., Kishorekumar, A., Somasundaram, R., and Panneerselvam, R. (2007). Drought induced biochemical modifications and proline metabolism in Abelmoschus esculentus L. Moench. Acta Botanica Croatica, 66, 43–56.

Smith, S.E., and Read, D.J. (1997). Mycorrhizal symbiosis. Academic Press, San Diego, CA. 605.

Socaci, S.A., Tofana, M., Socaciu, C. (2008). GC-MS Analysis of rosemary essential oil. Bulletin UASVM Agriculture, 65(2), 405 – 409.

Sultan, A. (2005). Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany, 42(3), 211-220. DOI:10.1016/S0098-8472(99)00035-0

Tabatabaie, S.J., and Nazari, J. (2007). Influence of nutrient concentration and NaCl salinity on growth, photosynthesis and essential oil content of peppermint and lemon verbenaSearch Results. Turkish Journal of Agriculture and Forestry, 31, 245-253.

Turkan, I. (2011). Plant responses to drought and salinity stress: development in a post-genomc era. Academic press. USA.

Turner, G.W., and Croteau, R. (2004). Organization of monoterpene biosynthesis in Mentha: Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiology, 136, 4215-4227. DOI: 10.1104/pp.104.050229

Verma, S., and Mishra, N. (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defence system. Journal of Plant Physiology, 162(9), 669-677. DOI:10.1016/j.jplph.2004.08.008

Wang, F.Y., Liu, R.J., Lin, X.G., and Zhou, J.M. (2004). Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza, 14, 133-137. DOI: 10.1007/s00572-003-0248-3

Wilde, P., Manal, A., Stodden, M., Sieverding, E., Hilderbrandt, U., and Bothe, H. (2009). Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology, 11, 1548-156. DOI: 10.1111/j.1462-2920.2009.01882.x

Wu, Q.S., Zou, Y.N., and He, X.H. (2010). Contribution of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta. Plant Physiology, 32, 297-304. DOI: 10.1007/s11738-009-0407-z

Zou, Y.N., Liang, Y.C., and Wu, Q.S. (2013). Mycorrhizal and non-mycorrhizal responses to salt stress in trifoliate orange: plant growth, root architecture and soluble sugar accumulation. International Journal of Agriculture and Biology, 15, 565-569.

Downloads

Published

26. 09. 2017

Issue

Section

Agronomy section

How to Cite

Lamian, A., Naghdi Badi, H., Mehrafarin, A., & Seif Sahandi, M. (2017). Changes in essential oil and morpho-physiological traits of tarragon (Artemisia dracuncalus L.) in responses to arbuscular mycorrhizal fungus, AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) inoculation under salinity. Acta Agriculturae Slovenica, 109(2), 215–227. https://doi.org/10.14720/aas.2017.109.2.06

Similar Articles

1-10 of 354

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)