Molecular genetic analysis of some North African barley germplasms

Authors

  • Reda Gaafar Tanta University, Egypt
  • Mai Allam NRC, Giza, Egypt
  • Rasha Sabry NRC, Giza, Egypt
  • Mahmoud Saker NRC, Giza, Egypt

DOI:

https://doi.org/10.14720/aas.2017.109.2.03

Keywords:

RT-PCR, resistance genes, barley, genetic diversity, RAPD

Abstract

Isozyme and RAPD markers were used to characterize 29 barley accessions, which were collected from North Africa. In addition, resistance gene sequences were employed to develop molecular markers using RT-PCR approach. High level of polymorphism was found with both RAPD and isozyme markers, where RAPD showed that 60 % of amplified bands were polymorphic. Peroxidase showed three polymorphic loci (7 allelic bands). Isozymes cluster analysis successfully separated the barley accessions into three geographically distinct groups. RAPD investigation demonstrated that Egyptian accessions were grouped into two obvious groups. Moreover, the Tunisian accessions showed no distinct clustering, while high dissimilarities were revealed by the Algerian accessions. In the RT-PCR, from six primer pairs selected, primer pair AF092524P1P2 successfully amplified two specific amplicons of approximately (340 & 220 bp) and (360 & 270 bp), respectively in two Egyptian barley genotypes (El-Awamah and Awlad-Ali). One primer pair DN988165P1P2 gave only one specific amplicon in both barley genotypes of 250 and 270 bp, respectively. The markers developed could be used in improving barley crop by assisting in breeding selection of resistance genotypes.

Author Biographies

  • Reda Gaafar, Tanta University, Egypt
    Botany Department
  • Mai Allam, NRC, Giza, Egypt
    Plant Biotechnology Department
  • Rasha Sabry, NRC, Giza, Egypt
    Plant Biotechnology Department
  • Mahmoud Saker, NRC, Giza, Egypt
    Plant Biotechnology Department

References

Barua U.M., Chalmers, K.J., Hackett, C.A., Thomas, W.T.B., Powell, W., Waugh, R. (1993). Identification of RAPD markers linked to a Phynchosporium secalis resistance locus in barley using near isogenic lines and bulked segregant analysis. Heredity, 71, 177-184. doi:10.1038/hdy.1993.122

Bhattacharyya, U., Pandey, S.K., Dasgupta, T. (2014). Identification of EST-SSRs and FDM in sesame (Sesamum indicum L) through data mining. Scholarly Journal of Agricultural Science, 4(2), 60-69.

Boczkowska, M., Harasimiuk, M., Onyśk, A. (2014). Studies on genetic variation within old polish cultivars of common oat. Cereal Research Communications. doi:10.1556/CRC.2014.0025.

Brown, A.D.H., Burdon, J.J., Grace, J.P. (1990). Genetic structure of Glycine canescens. A perennial relative of soybean. Theoretical and Applied Genetics, 79, 729-736. doi:10.1007/BF00224237

Ceccarelli, S., Grando S., van Leur, J.A.G. (1995). Barley landraces of the Fertile Crescent offer new breeding options for stress environments. Diversity, 112-113.

Chalmers, K.J., Barua, U.M., Hackett, C.A., Thomas, W.T.B., Waugh, R., Powell, W. (1993). Identification of RAPD markers linked to genetic factors controlling the milling energy requirement of barley. Theoretical and Applied Genetics, 87, 314-320. doi:10.1007/BF01184917

Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B., Pang, E.C.K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169-196. doi:10.1007/s10681-005-1681-5

Dangl, J.L. & Jones, J.D. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826-833. doi:10.1038/35081161

Devos, K.M. & Gale M.D. (1992). The use of random amplified polymorphic DNA markers in wheat. Theoretical and Applied Genetics, 84, 567-572. doi:10.1007/bf00224153

Doyle, J.J. & Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.

Ellis, R.P., Forster, B.P., Robinson, D., Handley, L.L., Gordon, D.C., Russell, J.R. et al. (2000). Wild barley: a source of genes for crop improvement in the 21st century?. Journal of Experimental Botany, 51, 9-17. doi:10.1093/jxb/51.342.9

Fernández, M.E., Figueiras, A.M., Benito, C. (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 104, 845-851. doi:10.1007/s00122-001-0848-2

Fetch, T.G., Steffenson B., Nevo, E. (2003). Diversity and sources of multiple disease resistance in Hordeum spontaneum Plant Disease Journal, 87, 1439-1448.

Fourmann, M., Chariot, F., Froger, N., Delourme, R., Brunel, D. (2001). Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome, 44, 1083-1099. doi:10.1139/g01-098

Fulton, R.E., Salasek, M.L., DuTeau, N.M., Black, W.C. (2001). SSCP analysis of cDNA markers provides a dense linkage map of the Aedes aegypti genome. Genetics, 158, 715-726.

Garcia Mas, J., Oliver, M., Gomez Paniagua, H., de Vicente, M.C. (2000). Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theoretical and Applied Genetics, 101, 860-864. doi:10.1007/s001220051553

Gepts, P. (2006). Plant genetic resources conservation and utilization: The accomplishments and future of a societal insurance policy. Crop Science, 46, 2278-2292. doi:10.2135/cropsci2006.03.0169gas

Giovanelli, J.I., Farnham, M.W., Wang, M., Strand, A.E. (2002). Development of sequence characterized amplified region markers linked to downy mildew resistance in broccoli. American Society for Horticultural Science, 127, 597-602.

Gottlieb, LD. (1981). Electrophoretic evidence and plant populations. Progress Photochemistry, 7, 1-46.

Joshi, C.P. & Nguyen, H.T. (1993). RAPD (Random amplified polymorphic DNA) analysis based on intervarietal genetic relationships among hexaploid wheats. Plant Science, 93, 95-103. doi:10.1016/0168-9452(93)90038-2

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. doi:10.1038/227680a0

Mantel, N.A. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209-220.

Matus, I.A. & Hayes, P.M. (2002). Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome, 45, 1095-1106. doi:10.1139/g02-071

Mayer, K.F.X., Waugh, R., Brown, J.W.S., Schulman, A., Langridge, P., Platzer, M., et al. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature, 491, 711-716. doi:10.1038/nature11543

Nevo, E. 1992. Origin, evolution, population genetic and resources for breeding of wild barley. Hordeum spontaneum in the fertile Crescent. In: Shewry PR (ed) Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology (pp.19-143). CAB international: Wallingford.

Nevo, E., Kirzhner V.M., Beiles, A., Korol, A.B. (1997). Selection versus random drift: long-term polymorphism persistence in small populations (evidence and modeling). Philosophical Transactions of the Royal Society : Biological Sciences, 352, 381-389. doi:10.1098/rstb.1997.0028

Parchman, T.L., Geist, K.S., Grahnen, J.A., Benkman, C.W., Buerkle, C.A. (2010). Transcriptome sequencing in an ecologically important tree species: Assembly, annotation, and marker discovery. BMC Genomics, 11, 180. doi:10.1186/1471-2164-11-180

Rohlf, F.J. (2000). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Version 2.1. Exeter Software, Setauket, NY.

Sánchez de la Hoz, M.P., Dávila, J.A., Loarce, Y., Ferrer, E. (1996). Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genome, 39, 112-117. doi:10.1139/g96-015

Shen, Y., Lebold, K., Lansky, E.P., Traber, M.G., Nevo, E. (2011). “Tocol-omic” diversity in wild barley. Chemistry & Biodiversity, 8, 2322-2330. doi:10.1002/cbdv.201000363

Soleimani, V.D., Braum, B.R., Johnson, D.A. (2002). AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theoretical and Applied Genetics, 104, 350-357. doi:10.1007/s001220100714

Soltis, D.E., Haufler, C.H., Darrow, D.C., Gastony G. J. (1983). Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. American Fern Journal, 73, 9-27. doi:10.2307/1546611

Spies, A., Korzun, V., Bayles, R., Rajaraman, J., Himmelbach, A., Hedley, P.E. et al. (2012). Allele mining in barley genetic resources reveals genes of race-non-specific powdery mildew resistance. Frontiers in Plant Science, 2, 113-135. doi:10.3389/fpls.2011.00113

Tanyolac, B. (2003). Inter-simple sequence repeats (ISSR) and RAPD variation among wild barley (Hordeum vulgare subsp. spontaneum) populations from west Turkey. Genetic Resources and Crop Evolution, 50, 611-614. doi:10.1023/A:1024412814757

Thomas, W.T.B., Baird, E., Fuller, J.D., Lawrence, P., Young, G.R., Russell J. et al. (1998). Identification of a QTL decreasing yield in barley linked to Mlo powdery mildew resistance. Molecular Breeding, 4, 381-393. doi:10.1023/A:1009646115967

Vanhala, T.K. & Stam, P. (2006). Quantitative trait loci for seed dormancy in wild barley (Hordeum spontaneum C. Koch). Genetic Resources and Crop Evolution, 53,1013-1019. doi:10.1007/s10722-004-7368-2

Downloads

Published

26. 09. 2017

Issue

Section

Agronomy section

How to Cite

Gaafar, R., Allam, M., Sabry, R., & Saker, M. (2017). Molecular genetic analysis of some North African barley germplasms. Acta Agriculturae Slovenica, 109(2), 187–196. https://doi.org/10.14720/aas.2017.109.2.03

Similar Articles

1-10 of 650

You may also start an advanced similarity search for this article.