Preservation of sweet chestnut genetic resources (Castanea sativa Mill.) against attack by chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu, 1951)

Authors

  • Rebecca VOLLMEIER University of Ljubljana, Biotechnical Faculty, Agronomy Department, Slovenia
  • Gregor OSTERC University of Ljubljana, Biotechnical Faculty, Agronomy Department, Slovenia
  • Zlata LUTHAR University of Ljubljana, Biotechnical Faculty, Agronomy Department, Slovenia

DOI:

https://doi.org/10.14720/aas.2018.111.1.20

Keywords:

sweet chestnut, Castanea sativa, chestnut gall wasp, Dryocosmus kuriphilus, torymid, Torymus sinensis, micropropagation, breeding

Abstract

European sweet chestnut (Castanea sativa Mill.) is one of the most important wood species due to its environmental and economic role in many agro-forestry systems. Chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu, 1951) is currently the most dangerous pest of sweet chestnut, including in Slovenia. Attack on vegetative buds (in which the eggs are deposited and on which galls are subsequently formed) disturbs the growth of shoots and reduces the yield. In the event of a strong attack, the tree can weaken and decay, which is already noticeable on the ground in Slovenia, especially in terms of the monitored genetic resources of the chestnut tree. Following Japanese experience, European countries are increasingly choosing biological control of chestnut gall wasp with the torymid wasp (Torymus sinensis Kamijo, 1982). Micropropagation is a way of ensuring effective preservation and reproduction while optimizing all phases of work. In the micropropagation of Slovenian sweet chestnut genetic resources, problems arise in the rooting phase.

References

Anagnostakis S. L., Clark S., McNabb H. (2011). Resistance of chestnut trees to infestation by Asian gall wasp. Annual Report of the Northern Nut Growers Association, 101, 15-17.

Anagnostakis S. L. (2014). Asian chestnut gall wasp on Connecticut chestnut trees. http://www.ct.gov/caes/lib/caes/documents/publications/fact_sheets/plant_pathology_and_ecology/asian_chestnut_gall_wasp_on_connecticut_chestnut_trees.pdf

Ballester A., Sanchez M. C., San-Jose M. C., Viéitez F. J., Viéitez A. M. (1990). Development of rejuvenation methods for in vitro establishment, multiplication and rooting of mature trees. Plant Aging: Basic and Applied Approaches, 186, 43-49. https://doi.org/10.1007/978-1-4684-5760-5_6

Ballester A., Sanchez M. C., Viéitez A. M. (1992). New strategies for in vitro propagation of chestnut. Proceedings of the World Chestnut Industry Conference, Morgantown, USA, 32-40.

Ballester A., San-Jose M C., Vidal N., Fernandez-Lorenzo J. L., Viéitez A. M. (1999). Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature phases of chestnut. Annals of Botany, 83, 619-629. https://doi.org/10.1006/anbo.1999.0865

Bosio G., Gerbaudo C., Piazza E. (2010). Dryocosmus kuriphilus Yasumatsu: an outline seven years after the first report in Piedmont (Italy). Acta Horticulturae, 866, 341-348. https://doi.org/10.17660/ActaHortic.2010.866.43

Bounous G. (2005). The chestnut: a multipurpose resource for the new millennium. Acta Horticulturae, 693, 33-40. https://doi.org/10.17660/ActaHortic.2005.693.1

Bounous G. (2014). Perspectives and future of the chestnut industry in Europe and all over the world. In: Proceedings of the second European congress on chestnut. Acta Horticulturae, 1043, 19-22. https://doi.org/10.17660/ActaHortic.2014.1043.1

Capuana M., Di Lonardo S. (2013). In vitro conservation of chestnut (Castanea sativa) by slow growth. In vitro cell and developmental biology-Plant, 49, 605-610. https://doi.org/10.1007/s11627-013-9536-6

Corredoira E., Martinez M. T., Cernadas J. M., San José M. C. (2017). Application of biotechnology in the conservation of the genus Castanea. Forests, 8, 394-408. https://doi.org/10.3390/f8100394

Dini F., Sartor C., Botta R. (2012). Detection of a hypersensitive reaction in the chestnut hybrid 'Bouche de Betizac' infested by Dryocosmus kuriphilus Yasumatsu. Plant Physiology and Biochemistry, 60, 87-73. https://doi.org/10.1016/j.plaphy.2012.07.023

Dryocosmus kuriphilus. (2005). Bulletin OEPP/EPPO Bulletin, 35, 3, 422-424.

Galic D., Dale A., Alward M. (2014). Vegetative propagation of American chestnut. Acta Horticulturae, 1019, 99-103. https://doi.org/10.17660/ActaHortic.2014.1019.15

Gibbs M., Schönrogge K., Alma A., Melika G., Quacchia A., Stone G. N., Aebi A. (2011). Torymus sinensis: a viable management option for the biological control of Dryocosmus kuriphilus in Europe? BioControl, 56, 4, 527-538. https://doi.org/10.1007/s10526-011-9364-8

Gonҫalves J. C., Diogo G., Amãncio S. (1998). In vitro propagation of chestnut (Castanea sativa × C. crenata): Effects of rooting treatments on plant survival, peroxidase activity and anatomical changes during adventitious root formation. Scientia horticulturae, 71, 265-275. https://doi.org/10.1016/S0304-4238(97)00136-2

Graziosi I., Rieske L. K. (2015). A plant pathogen causes extensive mortality in an invasive insect herbivore. Agricultural and Forest Entmology, 17, 366-374. https://doi.org/10.1111/afe.12116

Gresshoff, P.M. and C.H. Doy. (1972). Development and differentiation of haploid Lycopersicon esculentum. Planta, 107, 161-170. https://doi.org/10.1007/BF00387721

EFSA (2010). Risk assessment of the oriental chestnut gall wasp, Dryocosmus kuriphilus for the EU territory and identifi cation and evaluation of risk management options. EFSA Journal, 8, 6, 1-114.

Hasbun R., Valledor L., Santamaria E., Canal M. J., Rodriguez R. (2007). Dynamics of DNA methylation in chestnut trees development. Acta Horticulturae, 760, 563-566. https://doi.org/10.17660/ActaHortic.2007.760.80

Knapič V., Seljak G., M. Kolšek M. (2010). Experience with Dryocosmus kuriphilus Yatsumatsu eradication measures in Slovenia. OEPP/EPPO Bulletin, 40, 169-175. https://doi.org/10.1111/j.1365-2338.2010.02371.x

Kos K., Trdan S. (2010). Biotično zatiranje kostanjeve šiškarice (Dryocosmus kuriphilus Yasumatsu, Hymenoptera, Cynipidae). Acta agriculturae Slovenica, 95, 89-96.

Litz R. E. (2005). Biotechnology of fruit and nut crops. Biotechnology in agriculture series. Wallingford, CABI: 723 pp. https://doi.org/10.1079/9780851996622.0000

Metaxas A. M. (2013). Chestnut (Castanea spp.) cultivar evaluation for commercial chestnut production in Hamilton county, Tennessee. Chattanooga, University of Tennessee: Thesis. M. S. Environmental Science: 124 pp.

Moriya S., Shiga M., Adachi I. (2003). Classical biological control of the chestnut gall wasp in Japan. V: Proceedings 1st International Symposium on Biological Control of Arthropodes. Honolulu. Hawai. USDA-Forestry Service, 407-415.

Osterc G., Zavrl Fras M., Vodenik T., Luthar Z. (2005). The propagation of chestnut (Castanea sativa Mill.) nodal explants. Acta agriculturae Slovenica, 85(2), 411-418.

Pacurar D. I., Pernone I., Bellini C. (2014). Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiologia Plantarum, 151, 83-96. https://doi.org/10.1111/ppl.12171

Pereira-Lorenzo S., Ramos-Cabrer A. M. (2007). Chestnut, an ancient crop with future. Production Practices and Quality Assessment of Food Crops, 1, 105-161.

Pijut P. M., Woeste K. E., Michler C. H. (2011). Promotion of adventitious root formation of difficult-to-root hardwood tree species. Horticultural Reviews, 38, 213-251.

Pop T. I., Pamfil D., Bellini C. (2011). Auxin control in the formation of adventitious roots. Notulae Botanicae Horti Agrobotanici Cluj, 39, 1, 307-316.

Sánchez M. C., Vieitez A. M. (1991). In vitro morphogenetic competence of basal sprouts and crown branches of mature chestnut. Tree physiology, 8, 59-70. https://doi.org/10.1093/treephys/8.1.59

Šiftar A. (1992). In vitro grow rejuvenilisated shots from plants taken wth grafting n the germinated seeds of chestnut. Acta horticulturae, 300; 141-143.

Tetsumura T., Yamashita K. (2004). Micropropagation of japaneese chestnut (Castanea crenata Sieb. et Zucc.) seedlings. Hortscience, 39, 1684-1687.

Van Fleet W. (1914). Chestnut breeding experience. Journal of Heredity, 5, 19-25. https://doi.org/10.1093/jhered/5.1.19

Vielba J. M., Diaz-Sala C., Ferro E., Rico S., Lamprecht M., Abarca D., Ballester A. Sanchez C. (2011). CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed n rooting-competent cells. Tree physiology, 31. 1152-1160. https://doi.org/10.1093/treephys/tpr086

Yasumatsu K., Kamijo K. (1979). Chalcidoid parasites of Dryocosmus kuriphilus. Japan, with descriptions of five new species (Hymenoptera). Esakia, 14, 93-11.

Downloads

Published

8. 04. 2018

Issue

Section

Agronomy section

How to Cite

VOLLMEIER, R., OSTERC, G., & LUTHAR, Z. (2018). Preservation of sweet chestnut genetic resources (Castanea sativa Mill.) against attack by chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu, 1951). Acta Agriculturae Slovenica, 111(1), 209–217. https://doi.org/10.14720/aas.2018.111.1.20

Similar Articles

1-10 of 236

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>