Interlaboratory comparison of fig (Ficus carica L.) microsatellite genotyping data and determination of reference alleles

Authors

  • Matjaž HLADNIK University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, SI-6000 Koper, Slovenia
  • Jernej JAKŠE University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
  • Bouchaib KHADARI National Institute of Agricultural Research (INRA), UMR Genetic Improvement and Adaptation of Mediterranean and Tropical Plants AGAP 1334, F-34070 Montpellier, France
  • Sylvain SANTONI National Institute of Agricultural Research (INRA), UMR Genetic Improvement and Adaptation of Mediterranean and Tropical Plants AGAP 1334, F-34070 Montpellier, France
  • Dunja BANDELJ University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, SI-6000 Koper, Slovenia

DOI:

https://doi.org/10.14720/aas.2018.111.1.14

Keywords:

microsatellite marker, reference genotype, interlaboratory comparison, Ficus carica L.

Abstract

Microsatellites have been identified as the marker of choice in plant genotyping projects. However, due to length discrepancies obtained between different laboratories for the same allele, interlaboratory comparison of fingerprinting results is often a difficult task. The objectives of this study were to compare genotyping results of two laboratories, to evaluate genetic parameters of microsatellite markers and to determine reference allele sizes for fig cultivars from the Istrian peninsula.

Genotyping results of ninety fig (Ficus carica L.) accessions were comparable between the laboratories despite differences observed when comparing electropherograms of different capillary electrophoresis systems. Differences in lengths of the same alleles were detected due to different PCR methods and laboratory equipment, but the distances between alleles of the same locus were preserved. However, locus FSYC01 exhibited one allele dropout which led to misidentification of 28 heterozygotes as homozygote individuals suggesting this locus as unreliable. Allele dropout was assigned to the tail PCR technology or to a touchdown PCR protocol.

Genotypes of twenty-four reference cultivars from the Istrian peninsula were confirmed by both laboratories. These results will contribute to the usage of markers with greater reliability, discrimination power and consequently, to more reliable standardization with other fig genotyping projects.

References

Abdelkrim, A. B., Baraket, G., Essalouh, L., Achtak, H., Khadari, B., & Salhi-Hannachi, A. (2015). Use of morphological traits and microsatellite markers to characterize the Tunisian cultivated and wild figs (Ficus carica L.). Biochemical Systematics and Ecology, 59, 209-219. doi:10.1016/j.bse.2015.01.026

Abou-Ellail, M., Mahfouze, S. A., El-Enany, M. A. M., & Mustafa, N. S. A. (2014). Using biochemical and simple sequence repeats (SSR) markers to characterize (Ficus carica L.) cultivars. World Applied Sciences Journal, 29(3), 313-321. https://doi:10.5829/idosi.wasj.2014.29.03.13835

Achtak, H., Oukabli, A., Ater, M., Santoni, S., Kjellberg, F., & Khadari, B. (2009). Microsatellite markers as reliable tools for fig cultivar identification. Journal of the American Society for Horticultural Science, 134(6), 624-631.

Achtak, H., Ater, M., Oukabli, A., Santoni, S., Kjellberg, F., & Khadari, B. (2010). Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: the case of fig (Ficus carica L.) in Morocco. BMC Plant Biology, 10(1), 28. doi:10.1186/1471-2229-10-28

Ahmed, S., Dawson, D. A., Compton, S. G., & Gilmartin, P. M. (2007). Characterization of microsatellite loci in the African fig Ficus sycomorus L. (Moraceae). Molecular Ecology Notes, 7(6), 1175-1177. doi:10.1111/j.1471-8286.2007.01822.x

Aradhya, M. K., Stover, E., Velasco, D., & Koehmstedt, A. (2010). Genetic structure and differentiation in cultivated fig (Ficus carica L.). Genetica, 138(6), 681-694. doi:10.1007/s10709-010-9442-3

Balas, F. C., Osuna, M. D., Domínguez, G., Pérez-Gragera, F., & López-Corrales, M. (2014). Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genetics & Genomes, 10(3), 703-710. doi:10.1007/s11295-014-0715-3

Baldoni, L., Cultrera, N., Mariotti, R., Ricciolini, C., Arcioni, S., Vendramin, G., . . . Testolin, R. (2009). A consensus list of microsatellite markers for olive genotyping. Molecular Breeding, 24(3), 213-231. doi:10.1007/s11032-009-9285-8

Bandelj, D., Jakše, J., & Javornik, B. (2004). Amplification of fluorescent-labelled microsatellite markers in olives by a novel, economic method. Acta agriculturae Slovenica, 83(2), 323-329.

Bandelj, D., Javornik, B., & Jakše, J. (2007). Development of microsatellite markers in the common fig, Ficus carica L. Molecular Ecology Notes, 7(6), 1311-1314. doi:10.1111/j.1471-8286.2007.01866.x

Bandelj, D., Jakše, J., Javornik, B. (2008). Development of molecular markers for identification of fig varieties in Istria. In D. Bandelj, M. Bučar-Miklavčič & I. Vrhovnik (Eds.), The common fig (Ficus carica L.) in Istria: morphological, molecular and some chemical characteristics (pp. 84-89). Koper, SI: Annales.

Benjak, A., Konradi, J., Blaich, R., & Forneck, A. (2006). Different DNA extraction methods can cause different AFLP profiles in grapevine (Vitis vinifera L.). Vitis, 45(1), 15-21.

Butler, J. M. (2014). Advanced Topics in Forensic DNA Typing: Interpretation (1st ed.). San Diego, CA: Academic Press.

Caliskan, O., Polat, A. A., Celikkol, P., & Bakir, M. (2012). Molecular characterization of autochthonous Turkish fig accessions. Spanish Journal of Agricultural Research, 10(1), 130-140. doi:10.5424/sjar/2012101-094-11

Caroli, S., Santoni, S., & Ronfort, J. (2011). AMaCAID: a useful tool for accurate marker choice for accession identification and discrimination. Molecular Ecology Resources, 11(4), 733-738. doi:10.1111/j.1755-0998.2011.02993.x

Chapuis, M. P., & Estoup, A. (2007). Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution, 24(3), 621-631. doi:10.1093/molbev/msl191

Chatti, K., Baraket, G., Abdelkrim, A. B., Saddoud, O., Mars, M., Trifi, M., & Salhi Hannachi, A. (2010). Development of molecular tools for characterization and genetic diversity analysis in Tunisian fig (Ficus carica) cultivars. Biochemical Genetics, 48(9-10), 789-806. doi:10.1007/s10528-010-9360-1

Cipriani, G., Marrazzo, M. T., Marconi, R., Cimato, A., & Testolin, R. (2002). Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. TAG Theoretical and Applied Genetics, 104(2), 223-228. doi:10.1007/s001220100685

Cryer, N., Fenn, M., Turnbull, C., & Wilkinson, M. (2006). Allelic size standards and reference genotypes to unify international cocoa (Theobroma cacao L.) microsatellite data. Genetic Resources and Crop Evolution, 53(8), 1643-1652. doi:10.1007/s10722-005-1286-9

Culley, T. M., Stamper, T. I., Stokes, R. L., Brzyski, J. R., Hardiman, N. A., Klooster, M. R., & Merritt, B. J. (2013). An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Applications in Plant Sciences, 1(10), 1300027. doi:10.3732/apps.1300027

De Valk, H. A., Meis, J. F. G. M., Bretagne, S., Costa, J. M., Lasker, B. A., Balajee, S. A.,. Klaassen, C. H. W. (2009). Interlaboratory reproducibility of a microsatellite-based typing assay for Aspergillus fumigatus through the use of allelic ladders: proof of concept. Clinical Microbiology and Infection, 15(2), 180-187. doi:10.1111/j.1469-0691.2008.02656.x

Debernardi, A., Suzanne, E., Formant, A., Pène, L., Dufour, A. B., & Lobry, J. R. (2011). One year variability of peak heights, heterozygous balance and inter-locus balance for the DNA positive control of AmpFLSTR Identifiler STR kit. Forensic Science International: Genetics, 5(1), 43-49. doi:10.1016/j.fsigen.2010.01.020

Deemer, D. L., & Nelson, D. C. (2010). Standardized SSR allele naming and binning among projects. BioTechniques, 49, 835-836. doi:10.2144/000113540

Doveri, S., Sabino Gil, F., Díaz, A., Reale, S., Busconi, M., da Câmara Machado, A., . . . Lee, D. (2008). Standardization of a set of microsatellite markers for use in cultivar identification studies in olive (Olea europaea L.). Scientia Horticulturae, 116(4), 367-373. doi:10.1016/j.scienta.2008.02.005

Ellis, J. S., Gilbey, J., Armstrong, A., Balstad, T., Cauwelier, E., Cherbonnel, C., . . . Stevens, J. R. (2011). Microsatellite standardization and evaluation of genotyping error in a large multi-partner research programme for conservation of Atlantic salmon (Salmo salar L.). Genetica, 139(3), 353-367. doi:10.1007/s10709-011-9554-4

Ganopoulos, I., Xanthopoulou, A., Molassiotis, A., Karagiannis, E., Moysiadis, T., Katsaris, P., . . . Madesis, P. (2015). Mediterranean basin Ficus carica L.: from genetic diversity and structure to authentication of a Protected Designation of Origin cultivar using microsatellite markers. Trees, 29(6), 1959-1971. doi:10.1007/s00468-015-1276-2

Giraldo, E., Viruel, M. A., López-Corrales, M., & Hormaza, J. I. (2005). Characterisation and cross-species transferability of microsatellites in the common fig (Ficus carica L.). Journal of Horticultural Science and Biotechnology, 80(2), 217-224. doi:10.1080/14620316.2005.11511920

Giraldo, E., Lopez-Corrales, M., & Hormaza, J. I. (2008). Optimization of the management of an ex-situ germplasm bank in common fig with SSRs. Journal of the American Society for Horticultural Science, 133(1), 69-77.

Haberl, M., & Tautz, D. (1999). Comparative allele sizing can produce inaccurate allele size differences for microsatellites. Molecular Ecology, 8(8), 1347-1349. doi:10.1046/j.1365-294X.1999.00692_1.x

Ikegami, H., Nogata, H., Hirashima, K., Awamura, M., & Nakahara, T. (2009). Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers. Genetic Resources and Crop Evolution, 56(2), 201-209. doi:10.1007/s10722-008-9355-5

Jones, H., Bernole, A., Jensen, L., Horsnell, R., Law, J., Cooke, R., & Norris, C. (2008). Minimising inter-laboratory variation when constructing a unified molecular database of plant varieties in an allogamous crop. TAG Theoretical and Applied Genetics, 117(8), 1335-1344. doi:10.1007/s00122-008-0867-3

Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5), 1099-1106. doi:10.1111/j.1365-294X.2007.03089.x

Khadari, B., Hochu, I., Santoni, S., & Kjellberg, F. (2001). Identification and characterization of microsatellite loci in the common fig (Ficus carica L.) and representative species of the genus Ficus. Molecular Ecology Notes, 1(3), 191-193. doi:10.1046/j.1471-8278.2001.00072.x

Khadari, B., Oukabli, A., Ater, M., Mamouni, A., Roger, J. P., & Kjellberg, F. (2005). Molecular characterization of Moroccan fig germplasm using intersimple sequence repeat and simple sequence repeat markers to establish a reference collection. HortScience, 40(1), 29-32.

Khadari, B. (2012). Ex situ management of fig (Ficus carica L.) genetic resources: Towards the establishment of the Mediterranean reference collection. Acta Horticulturae, 940, 67-74. doi:10.17660/ActaHortic.2012.940.7

Koumi, P., Green, H. E., Hartley, S., Jordan, D., Lahec, S., Livett, R. J., . . . Ward, D. M. (2004). Evaluation and validation of the ABI 3700, ABI 3100, and the MegaBACE 1000 capillary array electrophoresis instruments for use with short tandem repeat microsatellite typing in a forensic environment. Electrophoresis, 25(14), 2227-2241. doi:10.1002/elps.200305976

Kump, B., & Javornik, B. (1996). Evaluation of genetic variability among common buckwheat (Fagopyrum esculentum Moench) populations by RAPD markers. Plant Science, 114(2), 149-158. doi:10.1016/0168-9452(95)04321-7

Kyung-Ho, M., Nam-Soo, K., Gi-An, L., Sok-Young, L., Ju Kyong, L., Jung Yoon, Y., . . . Soon-Jae, K. (2009). Development of SSR markers for studies of diversity in the genus Fagopyrum. Theoretical and Applied Genetics, 119(7), 1247-1254. doi:10.1007/s00122-009-1129-8

Leclair, B., Fregeau, C., Bowen, K., & Fourney, R. (2004). Systematic analysis of stutter percentages and allele peak height and peak area ratios at heterozygous STR loci for forensic casework and database samples. Journal of Forensic Sciences, 49(5), 968-980. doi:10.1520/JFS2003312

Mandel, J. R., Dechaine, J. M., Marek, L. F., & Burke, J. M. (2011). Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theoretical and Applied Genetics, 123(5), 693-704. doi:10.1007/s00122-011-1619-3

Mullins, F. M., Dietz, L., Lay, M., Zehnder, J. L., Ford, J., Chun, N., & Schrijver, I. (2007). Identification of an intronic single nucleotide polymorphism leading to allele dropout during validation of a CDH1 sequencing assay: implications for designing polymerase chain reaction-based assays. Genetics In Medicine, 9, 752. doi:10.1097/GIM.0b013e318159a369

Nybom, H., Weising, K., & Rotter, B. (2014). DNA fingerprinting in botany: past, present, future. Investigative Genetics, 5(1), 1-35. doi:10.1186/2041-2223-5-1

Pasqualotto, A. C., Denning, D. W., & Anderson, M. J. (2007). A cautionary tale: Lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. Journal of Clinical Microbiology, 45(2), 522-528. doi:10.1128/JCM.02136-06

Peakall, R., & Smouse, P. E. (2006). GENEALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295. doi:10.1111/j.1471-8286.2005.01155.x

Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537-2539. doi:10.1093/bioinformatics/bts460

Pompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics, 6(11), 847-859. doi:10.1038/nrg1707

Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18(2), 233-234. doi:10.1038/72708

Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergman, M., Gottlieb, H. E., . . . Flaishman, M. A. (2006). Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). Journal of Agricultural and Food Chemistry, 54(20), 7717-7723. doi:10.1021/jf060497h

Soriano, J., Zuriaga, E., Rubio, P., Llácer, G., Infante, R., & Badenes, M. (2011). Development and characterization of microsatellite markers in pomegranate (Punica granatum L.). Molecular Breeding, 27(1), 119-128. doi:10.1007/s11032-010-9511-4

Sutton, J. T., Robertson, B. C., & Jamieson, I. G. (2011). Dye shift: a neglected source of genotyping error in molecular ecology. Molecular Ecology Resources, 11, 514-520. doi:10.1111/j.1755-0998.2011.02981.x

This, P., Jung, A., Boccacci, P., Borrego, J., Botta, R., Costantini, L., . . . Maul, E. (2004). Development of a standard set of microsatellite reference alleles for identification of grape cultivars. TAG Theoretical and Applied Genetics, 109, 1448-1458. doi:10.1007/s00122-004-1760-3

Tvedebrink, T., Eriksen, P. S., Mogensen, H. S., & Morling, N. (2012). Statistical model for degraded DNA samples and adjusted probabilities for allelic drop-out. Forensic Science International: Genetics, 6(1), 97-101. doi:10.1016/j.fsigen.2011.03.001

Vemireddy, L. R., Archak, S., & Nagaraju, J. (2007). Capillary electrophoresis is essential for microsatellite marker based detection and quantification of adulteration of Basmati rice (Oryza sativa). Journal of Agricultural and Food Chemistry, 55(20), 8112-8117. doi:10.1021/jf0714517

Vinson, J. A., Zubik, L., Bose, P., Samman, N., & Proch, J. (2005). Dried fruits: excellent in vitro and in vivo antioxidants. Journal of the American College of Nutrition, 24(1), 44-50. doi:10.1080/07315724.2005.10719442

Wagner, H. W., & Sefc, K. M. (1999). IDENTITY 1.0. Vienna, AT: University of Agricultural Sciences, Centre for Applied Genetics.

Wenz, H. M., Robertson, J. M., Menchen, S., Oaks, F., Demorest, D. M., Scheibler, D., . . . Efcavitch, J. W. (1998). High-precision genotyping by denaturing capillary electrophoresis. Genome Research, 8(1), 69-80. doi:10.1101/gr.8.1.69

Zohary, D., & Spiegel-Roy, P. (1975). Beginnings of fruit growing in the old world. Science, 187(4174), 319-327. doi:10.1126/science.187.4174.319

Downloads

Published

8. 04. 2018

Issue

Section

Agronomy section

How to Cite

HLADNIK, M., JAKŠE, J., KHADARI, B., SANTONI, S., & BANDELJ, D. (2018). Interlaboratory comparison of fig (Ficus carica L.) microsatellite genotyping data and determination of reference alleles. Acta Agriculturae Slovenica, 111(1), 143–159. https://doi.org/10.14720/aas.2018.111.1.14

Most read articles by the same author(s)

1 2 > >>