Sugar beet profits from intercropping with wheat both under optimum and deficient phosphorus supply

Authors

  • Roghieh HAJIBOLAND Department of plant science, University of Tabriz, Iran
  • Shirin SHEKARI Department of Plant Science, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
  • Noushin SADEGHZADEH Department of Plant Science, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
  • Charlotte POSCHENRIEDER Plant Physiology, Plant Physiology Lab, Bioscience Faculty, Universidad Autonoma de Barcelona, 08193 Bellaterra, Spain

DOI:

https://doi.org/10.14720/aas.2018.111.1.09

Keywords:

intercrop, monocrop, sugar beet, wheat, phosphorus deficiency, acid phosphatase

Abstract

An experiment was conducted with wheat and sugar beet as monocrop and intercrop under low or adequate phosphorus supply. Dry matter production of shoot and roots were decreased in wheat while increased in sugar beet under intercrop conditions. Photosynthesis rate was diminished under intercrop conditions in wheat while elevated in sugar beet concomitant with reduction of transpiration rate and higher water use efficiency in the latter species. Phosphorus, potassium and iron contents were also lower in intercrop wheat while increased in sugar beet. The same effect of intercropping on biomass and nutrients uptake was observed in the short term hydroponic experiment. Interestingly, three root parameters including length, soluble carbohydrates and activity of secretory acid phosphatase that are characteristics for phosphorus-deficient plants were enhanced in both species by intercropping irrespective the phosphorus supply level. These data suggested an interspecific interaction beyond the different nutrient acquisition capacity in the intercrop pots.

References

Bagayoko, M., Alvey, S., Neumann, G., Buerkert, A. (2000). Root-induced increases in soil pH and nutrient availability to field-grown cereals and legumes on acid sandy soils of Sudano-Sahelian West Africa. Plant and Soil, 225, 117–127. doi:10.1023/A:1026570406777

Bhadoria, P. B. S., Steingrobe, B., Claassen, N., Leibersbach, H. (2002). Phosphorus efficiency of wheat and sugar beet seedlings grown in soils with mainly calcium, or iron and aluminium phosphate. Plant and Soil, 264, 41–52. doi:10.1023/A:1021567331637

Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. T., Cavieres, L. A., Kunstler, G., Liancourt, P., Tielbbörger, K., Travis, J. M. J., Anthelme, F., Armas, C., Coll, L., Corcket, E., Delzon, S., Forey, E., Kikvidze, E., Olofsson, J., Pugnaire, F., Quiroz, C. L., Saccone, P., Schiffers, K., Seifan, M., Touzard,

B., Michalet, B. (2008). Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 96, 18–34.

Brooker, R. W., Bennett, A. E., Cong, W. F., Daniell, T. J., George, T. S., Hallett, P. D., Hawes, C., Iannetta, P. P. M., Jones, H. G., Karley, A. J., Li, L., Mc Kenzie, B. M., Pakeman, R. J., Paterson, E., Schöb, C., Shen, J., Squire, G., Watson, C. A., Zhang, C., Zhang, F., Zhang, J., White, P. J. (2015). Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologists, 206, 107–117. doi:10.1111/nph.13132

Chiou, T. J., Lin, S. I. (2011). Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 62, 185–206. doi:10.1146/annurev-arplant-042110-103849

Dissanayaka, D. M. S. B., Maruyama, H., Masuda, G., Wasaki, J. (2015). Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply. Plant and Soil, 390, 223–236. doi:10.1007/s11104-015-2392-x

Gao, Y., Duan, A., Sun, J., Li, F., Liu, Z., Liu, H., Liu, Z. (2009). Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. Field Crops Research, 111, 65–73. doi:10.1016/j.fcr.2008.10.007

Hammond, J. P., White, P. J. (2008). Sucrose transport in the phloem: integrating root responses to phosphorus starvation. Journal of Experimental Botany, 59, 93–109. doi:10.1093/jxb/erm221

Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Skrumsager, I., White, P. (2012). Function of macronutrients. In Marschner, P. (Ed.), Marschner’s Mineral Nutrition of Higher Plants (pp. 135–472). London, UK: Academic Press. doi:10.1016/B978-0-12-384905-2.00006-6

Jaiswal, P. C. (2003). Soil, Plant and Water Analysis. Ludhiana, India: Kalyani Publishers.

Khorassani, R., Hettwer, U., Ratzinger, A., Steingrobe, B., Karlovsky, P., Claassen, N. (2011). Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biology, 11, 1. doi:10.1186/1471-2229-11-121

Li, L., Li, S. M., Sun, J. H., Zhou, L. L., Bao, X. G., Zhang, H. G., Zhang, F. S. (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences (USA), 104, 11192–11196. doi:10.1073/pnas.0704591104

Li, L., Tilman, D., Lambers, H., Zhang, F. S. (2014). Plant diversity and overyielding: insights from below-ground facilitation of intercropping in agriculture. New Phytologists, 203, 63–69. doi:10.1111/nph.12778

Li, D., Zhu, H., Liu, K., Liu, X., Leggewie, G., Udvardi, M., Wang, D. (2002). Purple acid phosphatases of Arabidopsis thaliana comparative analysis and differential regulation by phosphate deprivation. Journal of Biological Chemistry, 277, 27772–27781. doi:10.1074/jbc.M204183200

Lichtenthaler, H. K., Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591–592. doi:10.1042/bst0110591

Lin, W. Y, Huang, T. K., Leong, S. J., Chiou, T. J. (2014). Long-distance call from phosphate: systemic regulation of phosphate starvation responses. Journal of Experimental Botany, 65, 1817–1827. doi:10.1093/jxb/ert431

Misson, J., Raghothama, K. G., Jain, A., Jouhet, J., Block, M. A., Bligny, R., Ortet, P., Creff, A., Somerville, S., Rolland, N., Doumas, P., Nacry, P., Herrerra-Estrella, L., Nussaume, L., Thibaud, M. C. (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences (USA), 102, 11934–11939. doi:10.1073/pnas.0505266102

Neumann, G., Römheld, V. (2012). Rhizosphere chemistry in relation to plant nutrition. In: Marschner, P. (Ed.), Marschner’s Mineral Nutrition of Higher Plants (pp. 347–368). London, UK: Academic Press. doi:10.1016/B978-0-12-384905-2.00014-5

Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., Zhang, Y. S. (2013). Responses of root architecture development to low phosphorus availability: a review. Annals of Botany, 112, 391–40. doi:10.1093/aob/mcs285

Rouached, H., Arpat, A. B., Poirier, Y. (2010). Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Molecular Plant, 3, 288–299. doi:10.1093/mp/ssp120

Wang, Z., Shen, J., Ludewig, U., Neumann, G. (2015). A re-assessment of sucrose signaling involved in cluster-root formation and function in phosphate-deficient white lupin (Lupinus albus). Physiologia Plantarum, 154, 407–419. doi:10.1111/ppl.12311

Wu, K., Fullen, M. A., An, T., Fan, Z., Zhou, F., Xue, G., Wu, B. (2012). Above-and below-ground interspecific interaction in intercropped maize and potato: A field study using the ‘target’ technique. Field Crops Research, 139, 63–70. doi:10.1016/j.fcr.2012.10.002

Yang, C., Huang, G., Chai, Q., Luo, Z. (2011). Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China. Field Crops Research, 124, 426–432. doi:10.1016/j.fcr.2011.07.013

Yemm, E. W., Cocking, E. C. (1955). The determination of amino acids with ninhydrin. Analyst, 80, 209–213. doi:10.1039/an9558000209

Yemm, E. W., Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemistry Journal, 57, 508–514. doi:10.1042/bj0570508

Zhang, Y., Wang, X., Lu, S., Liu, D. (2014). A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation. Journal of Experimental Botany, 65, 6577–6588. doi:10.1093/jxb/eru377

Zhang, F., Li, L. (2003). Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 248, 305–312. doi:10.1023/A:1022352229863

Zhang, F., Shen, J., Zhang, J., Zuo, Y., Li, L., Chen, X. (2010). Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Advances in Agronomy, 107, 1–32. doi:10.1016/S0065-2113(10)07001-X

Zhang, F. S., Li, L., Sun, J. H. (2001). Contribution of above- and below-ground interactions to intercropping. In Horst, W. J., Schenk, M. K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W. B., Goldbach, H., Olfs, H. W., Römheld, V., Sattelmacher, B., Schmidhalter, U., Schubert, S., Wirén, N. v., Wittenmayer, L., (Eds.), Plant Nutrition, Volume 92, Developments in Plant and Soil Sciences (pp. 978–979). Netherlands: Springer.

Zuo, Y., Zhang, F. (2009). Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species: a review. Agronomy for Sustainable Development, 29, 63–71. doi:10.1051/agro:2008055

Downloads

Published

8. 04. 2018

Issue

Section

Agronomy section

How to Cite

HAJIBOLAND, R., SHEKARI, S., SADEGHZADEH, N., & POSCHENRIEDER, C. (2018). Sugar beet profits from intercropping with wheat both under optimum and deficient phosphorus supply. Acta Agriculturae Slovenica, 111(1), 85–100. https://doi.org/10.14720/aas.2018.111.1.09

Similar Articles

1-10 of 323

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)