Field performance of maize (Zea mays L.) cultivars under drought stress

Authors

  • Kazem GHASSEMI-GOLEZANI Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
  • Shabnam HEYDARI Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
  • Bahareh DALIL Department of Agriculture, Payame Noor Universtiy, Tehran, Iran

DOI:

https://doi.org/10.14720/aas.2018.111.1.03

Keywords:

chlorophyll content, leaf temperature, maize, photosystem II, drought stress

Abstract

This research was carried out in 2014 at the Research Farm of the University of Tabriz, Iran. The experiment was arranged as split plot on the basis of randomized complete block with three replicates to assess the effects of four irrigation intervals (irrigations after 60, 80, 100 and 120 mm evaporation) on physiological and agronomical traits of three cultivars of maize (Zea mays L.; ‘SC704’, ‘NS640’, ‘DC303’: late, mid and early maturing, respectively). Irrigation intervals and maize cultivars were assigned to the main and sub-plots, respectively. Leaf temperature of all maize cultivars significantly increased, but chlorophyll content index, maximum efficiency of photosystem II, number of grains per plant, 1000 grain mass, plant biomass, grain yield and harvest index significantly decreased with increasing irrigation intervals. Late maturing cultivar (‘SC704’) was superior in all studied traits, followed by mid (‘NS640’) and early (‘DC303’) maturing cultivars. It was concluded that water limitation can potentially reduce performance of maize cultivars in the field, but the extent of this reduction depends on genotype and severity of stress.

References

Anjum, S.A., Xie, X., Wang, L., Saleem, M., Man, C., Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032.

Aslam, M., Zamir, M.S.I., Afzal, I., Yassen, M., Mubeen, M., Shoaib, A. (2013). Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercetari Agronomice in Moldova, 2, 99-114.

Badoni, A., Nautiyal, M., Gusain, K., Kaur, M., Dhiman, R., Bisht, C., Chauhan, J.S. (2009). Effect of water uptake on germinability in seeds of some medicinal plants. Journal of American Science, 5, 123-28.

Ball, R.A., Purcell, L.C., Vories, E.D. (2000). Short-season soybean yield compensation in response to population and water regime. Crop Science, 40, 1071-1078. doi:10.2135/cropsci2000.4041070x

Banzinger, M., Edmeades, G.O., Beck, D., Bellon, M. (2000). Breeding for drought and nitrogen stress tolerance in maize: From theory to practice. Mexico, D.F.: CIMMYT.

Borra´s, L., Slafer, G.A., Otegui, M.E. (2004). Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 86, 131-46. doi:10.1016/j.fcr.2003.08.002

Brestic, M., Zivcak, M. (2013). PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In G.R. Rout & A.B. Das (Eds), Molecular stress physiology of plants (pp. 427). India, Springer. doi:10.1007/978-81-322-0807-5_4

Campos, H., Cooper, M., Habben, J.E., Edmeades, G.O., Schussle, J.R. (2004). Improving drought tolerance in maize view from industry. Field Crop Research, 90, 19-34. doi:10.1016/j.fcr.2004.07.003

Dalil, B., Ghassemi-Golezani, K. (2012). Changes in leaf temperature and grain yield of maize under different levels of irrigation. Research on Crops, 13, 481- 485.

Ghassemi-Golezani, K., Dalil, B., Dabbagh-Mohammadi Nasab, A., Zehtab-Salmasi, S. (2008a). The Response of chickpea cultivars to field water deficit. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 36, 25-28.

Ghassemi-Golezani, K., Dalil, B., Moghaddam, M., Raey, Y. (2011). Field performance of differentially deteriorated seed lots of maize (Zea mays) under different irrigation treatments. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39, 160-163.

Ghassemi-Golezani, K., Khomari, S., Valizadeh, M., Alyari, H. (2008b). Changes in chlorophyll content and fluorescence of leaves of winter rapeseed affected by seedling vigor and cold acclimation duration. Journal of Food, Agriculture & Environment, 6, 196-199.

Ghassemi-Golezani, K., Lotfi, R. (2015). The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russian Journal of Plant Physiology, 62, 611–616. doi:10.1134/S1021443715040081

Gholipoor, M. (2009). Evaluating the response of rainfed-chickpea population density in Iran, using simulation. World Academy of Sciences, Engineering & Technology, 49, 97-104.

Gonzalez, F.G., Slafer, G.A., Miralles, D.J. (2003). Grain and floret number in response to photoperiod during stem elongation in fully and slightly vernalized wheat. Field Crops Research, 81, 17-27. doi:10.1016/S0378-4290(02)00195-8

Gregoriou, K., Pontikis, K., Vemmos S. (2007). Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaeaL.). Photosynthetica, 45, 172–181. doi:10.1007/s11099-007-0029-x

Hermans, C., Smeyers, M., Rodriguez, R.M., Eyletters, M., Strasser, R.J., Delhaye, J.P. (2003). Quality assessment of urban trees: A comparative study of physiological characterization, airborne imaging and on site fluorescence monitoring by the O-J-I-P-test. Journal of Plant Physiology, 160, 81-90. doi:10.1078/0176-1617-00917

Hosseinian, H., Majnoun-Hoseini, N. (2015). Analysis of correlation coefficients between grain yield and yield components in cowpea genotypes under normal and drought conditions stress. Iranian Journal of Field Crop Science, 45, 575-583.

Huang, R., Birch, C.J., George, D.L. (2006). Water use efficiency in maize production. The challenge and improvement strategies. 6th Triennial Conference, Australia.

Krause, G.H., Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313-349. doi:10.1146/annurev.pp.42.060191.001525

Ladjal, M., Epron, D., Ducrey, M. (2000). Effects of drought preconditioning on thermo tolerance of photosystem II and susceptibility of photosynthesis to heat stress in cedar seedlings. Tree Physiology, 20, 1235–1241. doi:10.1093/treephys/20.18.1235

Larcher, W. (2000). Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosystems, 134, 279-95. doi:10.1080/11263500012331350455

Lotfi, R., Pessarakli, M., Gharavi-Kouchebagh, P., Khoshvaghti, H. (2015). Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity. The Crop Journal, 3, 434-439. doi:10.1016/j.cj.2015.05.006

Lu, Z., Chen, J., Percy, R.G., Zeiger, E. (1997). Photosynthetic rate, stomatal conductance and leaf area in two cotton species (Gossypium barbadense and Gossypium hirsutum) and their relation with heat resistant and yield.

Austuralian Journal of Plant Physiology, 24, 693-700. doi:10.1071/PP97056

Mohammadian, R., Moghaddam, M., Rahimian, H., Sadeghian, S.Y. (2005). Effect of early season drought stress on growth characteristics of sugar beet genotypes. Turkish Journal of Agriculture and Forestry, 29, 357-68.

Monneveux, P., Sanchez, C., Beck, D., Edmeds, G.E. (2006). Drought tolerance improvement in topical maize source populations: evidence of progress. Journal of Crop Science, 46, 180-191. doi:10.2135/cropsci2005.04-0034

Paul Parkhill, J., Maillet, G., Gullen, J.J. (2001). Fluorescence-based maximal quantum yield for PS II as a diagnostic of nutrient stress. The Journal of Physiology, 37, 517-529.

Rizza, F., Pagani, D., Stanca, A.M., Cattivelli, L. (2001). Use of chlorophyll florescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breeding, 120, 389-396. doi:10.1046/j.1439-0523.2001.00635.x

Rong-Hua, L., Pei-Guo, G., Baum, M., Grando, S., Ceccarelli, S. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Science in China, 5, 751-757. doi:10.1016/S1671-2927(06)60120-X

Roohi, E., Tahmasebi-Sarvestani, Z., Modarres-Sanavy, S.A.M. Siosemardeh, A. (2013). Comparative study on the effect of soil water stress on photosynthetic function of triticale, bread wheat, and barley. Journal of Agricultural Science & Technology, 15, 215-228.

Rimski-Korsakov, H., Rubio, G., Lavado, R.S. (2009). Effect of water stress in maize crop production and nitrogen fertilizer fate. Journal of Plant Nutrition, 32, 565-578. doi:10.1080/01904160802714961

Rohacek, K. (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationship. Photosynthetica, 40, 13-29. doi:10.1023/A:1020125719386

Sabir, P., Ashraf, M., Hussain, M., Jamil, A. (2009). Relationship of photosynthetic pigments and water relations with salt tolerance of roso millet (Panicum miliaceum L.) accessions. Pakistan Journal of Botany, 41, 2957-2964.

Salvucci, M.E., Crafts-Brandner, J.S. (2004). Inhibition of photosynthesis by heat stress: the activation state of rubisco as a limiting factor in photosynthesis. Physiologia Plantarum, 120, 179-86. doi:10.1111/j.0031-9317.2004.0173.x

Sangoi, L. (2000). Understanding plant density effects on maize growth and development: an important issue to maximize grain yield. Ciencia Rural, 31, 159-168. doi:10.1590/S0103-84782001000100027

Shahenshah, Isoda, A. (2016). Effects of water stress on leaf temperature and chlorophyll fluorescence parameters in cotton and peanut. Plant Production Science, 13, 269-278. doi:10.1626/pps.13.269

Soltani, A., Khooie, F.R., Ghassemi-Golezani, K., Moghaddam, M. (2001). A simulation study of chickpea crop response to limited irrigation in a semi-arid environment. Agricultural Water Management, 49, 225-37. doi:10.1016/S0378-3774(00)00143-8

Soni, S., Yadav, V.K., Pratap, N., Bhadana, V.P., Ram, T. (2013). Selection criteria, yield relationship with component traits and grouping of tropical japonica, indica lines and derived hybrids of rice (Oryza sativa L.). SAARC Journal of Agriculture, 11, 17-32.

Valifard, M., Moradshahi, A., Kholdebarin, B. (2012). Biochemical and physiological responses of two wheat (Triticum aestivum L.) cultivars to drought stress applied at seedling stage. Journal of Agricultural Science & Technology, 14, 1567-1578.

Zarco-Tejada, P.J., Berni, J.A.J., Suarez, L., Sepulcre-Canto, G., Morales, F., Miller, J.R. (2009). Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sensing & Environment, 113, 1262–1275. doi:10.1016/j.rse.2009.02.016

Downloads

Published

8. 04. 2018

Issue

Section

Agronomy section

How to Cite

GHASSEMI-GOLEZANI, K., HEYDARI, S., & DALIL, B. (2018). Field performance of maize (Zea mays L.) cultivars under drought stress. Acta Agriculturae Slovenica, 111(1), 25–32. https://doi.org/10.14720/aas.2018.111.1.03