Effect of salinity on Brassica rapa var. toria (BRSRT) under selenium defence: A trial to assess the protective role of selenium
DOI:
https://doi.org/10.14720/aas.2017.109.3.09Keywords:
Brassica rapa, antioxidants, salinity stress, sodium selenateAbstract
The present study assesses the role of selenium, an antioxidant in salt-stressed plants. A hydroponic trial of sodium selenate (Na2SeO4) on the growth, oxidative stress and antioxidant protection system of Brassica rapa var. toria (BRSRT) plant was studied. 40 µmol and 100 µmol of Na2SeO4 were hydroponically applied to BRSRT roots with 50 mmol and 100 mmol sodium chloride (NaCl) for 12 days. Plant growth, biomass production and photosynthetic pigments at 100 mmol salt stress was inhibited while oxidative stress indicators, for example, hydrogen peroxide and lipid peroxidation were stimulated. Supplementation of 40 µmol Na2SeO4 with 50 mmol and 100 mmol NaCl improved growth, photosynthetic pigments and acted as an antioxidant by inhibiting lipid peroxidation and increasing superoxide dismutase, ascorbate peroxidase, catalase, glutathione peroxidase, glutathione reductase activities. The in-gel assays also showed enhanced activities of these enzymes. At 100 µmol concentration, selenium under salt stress, repressed growth and expression of antioxidant enzymes and stimulated oxidative stress with enhanced glutathione peroxidase activity. Under consolidated stress treatment, an addition of 40 µmol Na2SeO4 was the most effective for both NaCl concentrations. The finding reveals that the optimal selenium supplementation presents a promising potential for use in conditions of relatively high levels of NaCl stress for BRSRT seedlings.References
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126, doi:10.1016/S0076-6879(84)05016-3 DOI: https://doi.org/10.1016/S0076-6879(84)05016-3
Aliu, S., Rusinovci, I., Fetahu, S., Gashi, B., Simeonovska, E., Rozman, L. (2015). The effect of salt stress on the germination of maize (Zea mays L.) seeds and photosynthetic pigments. Acta Agriculturae Slovenica, 105(1), 85-94, doi:10.14720/aas.2015.105.1.09 DOI: https://doi.org/10.14720/aas.2015.105.1.09
Anderson, M.E. (1985). Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology, 113, 548-555, doi:10.1016/S0076-6879(85)13073-9 DOI: https://doi.org/10.1016/S0076-6879(85)13073-9
Anderson, J.W., & McMahon, P.J. (2001). The role of glutathione in the uptake and metabolism of sulfur and selenium. In: Grill D, Tausz MM, de Kok LJ (eds) Significance of glutathione to plant adaptation to the environment. Kluwer Academic, The Netherlands, 57–99. doi:10.1007/0-306-47644-4_4 DOI: https://doi.org/10.1007/0-306-47644-4_4
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373-399, doi:10.1146/annurev.arplant.55.031903.141701 DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701
Arnon, D.I. (1949). The conversion of light into chemical energy in photosynthesis. Nature, 184, 10-21, doi:10.1038/184010a0 DOI: https://doi.org/10.1038/184010a0
Avila, F.W., Yang, Y., Faquin, V., Ramos, S.J., Guilherme, L.R., Thannhauser, T.W. (2014). Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-bio fortified Brassica sprouts. Food Chemistry, 165, 578-586, doi:10.1016/j.foodchem.2014.05.134 DOI: https://doi.org/10.1016/j.foodchem.2014.05.134
Cakmak, I., Strbac, D., Marschner, H. (1993). Activities of hydrogen peroxide scavenging enzymes in germinating wheat (Triticum aestivum L.) seeds. Journal of Experimental Botany, 44, 127-132, doi: 10.1093/jxb//44.1.127. DOI: https://doi.org/10.1093/jxb/44.1.127
Diao, M., Ma, L., Wang, J., Cui, J., Fu, A., Liu, H. (2014). Selenium promotes the growth and photosynthesis of tomato (Lycopersicon esculentum Miller) seedlings under salt stress by enhancing chloroplast antioxidant defense system. Journal of Plant Growth Regulation, 33, 671-682, doi:10.1007/s00344-014-9416-2 DOI: https://doi.org/10.1007/s00344-014-9416-2
Djanaguiraman, M., Devi, D.D., Shanker, A.K., Sheeba, J.A., Bangarusamy, U. (2005). Selenium – an antioxidative protectant in soybean (Glycine max (L). merr.) during senescence. Plant Soil, 272, 77-86, doi:10.1007/s11104-004-4039-1 DOI: https://doi.org/10.1007/s11104-004-4039-1
Djanaguiraman, M., Prasad, P.V.V., Seppänen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 48 (12), 999-1007, doi:10.1016/j.plaphy.2010.09.009 DOI: https://doi.org/10.1016/j.plaphy.2010.09.009
Elia, A.C., Galarini, R., Taticchi, M.I., Dorr, A.J.M., Mantilacci, L. (2003). Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety. 55, 162-167. doi:10.1016/S0147-6513(02)00123-9 DOI: https://doi.org/10.1016/S0147-6513(02)00123-9
FAO. (2009). High level expert forum – how to feed the world in 2050. Economic and Social Development Department, Food and Agricultural Organization of the United Nations, Rome.
Feng, R., Wei, C., Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany, 87, 58-68, doi:10.1016/j.envexpbot.2012.09.0020 DOI: https://doi.org/10.1016/j.envexpbot.2012.09.002
Filek, M., Keskinen, R., Hartikainen, H., Szarejko, I., Janiak, A., Miszalski, Z., Golda, A. (2008). The protective role of selenium in rape (Brassica napus L.) seedlings subjected to cadmium stress. Journal of Plant Physiology, 165, 833-844, doi:10.1016/j.jplph.2007.06.006 DOI: https://doi.org/10.1016/j.jplph.2007.06.006
Foyer, C.H., & Noctor, G. (2011). Ascorbate and Glutathione: The Heart of the Redox Hub. Plant Physiology, 155, 2-18, doi:10.1104/pp.110.167569 DOI: https://doi.org/10.1104/pp.110.167569
Foyer, C.H., & Noctor, G. (2009). Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications. Antioxidant and Redox Signaling, 11(4), 861-905, doi:10.1089/ars.2008.2177 DOI: https://doi.org/10.1089/ars.2008.2177
Foyer, C.H., Souriau, N., Perret, S., Lelandais, M., Kunert, K.J., Pruvost, C., Jouanin L. (1995). Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar (Populus tremula; Populus alba) trees. Plant Physiology, 109, 1047-1057, doi:10.1104/pp.109.3.1047 DOI: https://doi.org/10.1104/pp.109.3.1047
Giannopolitis, C.N., & Reis, S.K. (1997). Superoxide dismutase I Occurrence in higher plants. Plant Physiology. 59, 309-314, doi: 10.1104/pp.59.2. DOI: https://doi.org/10.1104/pp.59.2.309
Hajiboland, R., Sadeghzadeh, N., Sadeghzadeh, B. (2014). Effect of Se application on photosynthesis, osmolytes and water relations in two durum wheat (Triticum durum L.) genotypes under drought stress. Acta Agriculturae Slovenica, 103(2), 167-179, doi: 10.14720/aas.2014.103.2.2. DOI: https://doi.org/10.14720/aas.2014.103.2.2
Hajiboland, R., & Amjad L. (2007). Does antioxidant capacity of leaves play a role in growth response to selenium at different sulfur nutritional status? Plant Soil Environment, 53, 207-215. doi:10.14720/aas.2014.103.2.2 DOI: https://doi.org/10.17221/2202-PSE
Hartikainen, H., Xue, T.L., Piironen, V. (2000). Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil, 225, 193-200, doi:10.1023/A:1026512921026 DOI: https://doi.org/10.1023/A:1026512921026
Hashem, A.H., Raifa, A.H., Bekheta, A.M., El-Kady, A.F. (2013). Protective role of Selenium in Canola (Brassica napus L.) plant subjected to salt stress. Egyptian Journal of Experimental Biology (Botany). 9(2), 199-211.
Hasanuzzaman, M., Hossain, M.A., Fujita, M. (2011). Selenium-induced up regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings (Brassica napus L.). Biological Trace Element Research, 143(3), 1704-1721. doi:10.1007/s12011-011-8958-4 DOI: https://doi.org/10.1007/s12011-011-8958-4
Hasanuzzaman, M., & Fujita, M. (2011). Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed (Brassica napus L.) seedlings. Biological Trace Element Research, 143, 1758-1776, doi:10.1007/s12011-011-8998-9 DOI: https://doi.org/10.1007/s12011-011-8998-9
Hawrylak-Nowak, B. (2009). Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biological Trace Element Research, 132 (1), 259-269, doi:10.1007/s12011-009-8402-1 DOI: https://doi.org/10.1007/s12011-009-8402-1
Hernandez, M., Fernandez-Garcia, N., Diaz-Vivancos, P., Olmos, E. (2010). A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. Journal of experimental Botany, 61, 521-535, doi:10.1093/jxb/erp321 DOI: https://doi.org/10.1093/jxb/erp321
Hoagland, D.R., & Arnon, D.I. (1950). The water-culture method for growing plant without soil. California Agriculture Experiment Station Circular, 347, 1-32.
Hodges, D., Mark John, M., De Long Charles F., Forney, Robert K.P. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604-611, doi:10.1007/s004250050524 DOI: https://doi.org/10.1007/s004250050524
Hoque, M.A., Okuma, E., Banu, M.N.A., Nakamura, Y., Shimoishi, Y., Murat, Y. (2007). Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, 164, 553-561, doi:10.1016/j.jplph.2006.03.010 DOI: https://doi.org/10.1016/j.jplph.2006.03.010
Hu, L., Huang, Z., Liu, S., Fu, J. (2012). Growth response and gene expression in antioxidant-related enzymes in two bermudagrass (Cynodon dactylon) genotypes differing in salt tolerance. Journal of the American Society for Horticultural Science, 137, 134-143. DOI: https://doi.org/10.21273/JASHS.137.3.134
Israr, M., Sahi, S.V., Jain, J. (2006). Cadmium Accumulation and Antioxidative Responses in the Sesbania drummondii callus. Archives of Environmental and Contamination Toxicology, 50, 121-127. doi:10.1007/s00244-005-5029-x DOI: https://doi.org/10.1007/s00244-005-5029-x
Jaleel, C.A., Riadh, K., Gopi, R., Manivannan, P., Inés, J., Al-Juburi, H.J., Zhao, C.X., Shao, H.B., Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 31, 427-436, doi:10.1007/s11738-009-0275-6 DOI: https://doi.org/10.1007/s11738-009-0275-6
Janmohammadi, M., Abbasi, A., Sabaghnia, N. (2011). Influence of NaCl treatments on growth and biochemical parameters of castor bean (Ricinus communis L.). Acta Agriculturae Slovenica, 99(1), 31-40, doi:10.2478/v10014-012-0004-5 DOI: https://doi.org/10.2478/v10014-012-0004-5
Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, Jia., Wang, H., Li, D. (2017). Effect of exogenous selenium supply on photosynthesis, Na+accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, 7, 42039, doi:10.1038/srep42039 DOI: https://doi.org/10.1038/srep42039
Kafel, A., Nadgórska-Socha, A., Gospodarek, J., Babczyńska, A., Skowronek, M., Kandziora M., Rozpendek, K. (2010). The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants. Science of the Total Environment, 408(5), 1111-1119, doi:10.1016/j.scitotenv.2009.11.013 DOI: https://doi.org/10.1016/j.scitotenv.2009.11.013
Kang, K.S., Lim, C.J., Han, T.J., Kim, J.C., Jin, C.D. (1999). Changes in the isozyme composition of antioxidant enzymes in response to aminotriazole in leaves of Arabidopsis thaliana. Journal of Plant Biology, 42, 187-193. doi:10.1007/BF03030477 DOI: https://doi.org/10.1007/BF03030477
Kankofer, M. (2002). Superoxide dismutase and glutathione peroxidase activities in bovine placenta: spectrophotometric and electrophoretic analysis. Revue de Médecine Vétérinairé, 153, 121-124.
Kaur, N., Sharma, S., Kaur, S., Nayyar, H. (2014). Selenium in agriculture: a nutrient or contaminant for crops?. Archives of Agronomy and Soil Science, 60, 1593-1624, doi:10.1080/03650340.2014.918258 DOI: https://doi.org/10.1080/03650340.2014.918258
Kumar, D. 1995. Salt tolerance in oilseed Brassicas-present status and future prospects. Plant breeding Abstracts. 65(10), 1439-1477.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685, doi:10.1038/227680a0 DOI: https://doi.org/10.1038/227680a0
Liu J., Xie X., Du J., Sun J., Bai X. (2008). Effects of simultaneous drought and heat stress on Kentucky bluegrass (Poa pratensis L.). Journal of Horticultural Sciences, 115, 190-195, doi:10.1016/j.scienta.2007.08.003 DOI: https://doi.org/10.1016/j.scienta.2007.08.003
Lowry, H., Rosebrough, J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275, doi:10.1038/227680a0 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Meloni, D.A., & Martińez, C.A. (2009). Glycinebetaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedlings. Brazilian Journal of Plant Physiology, 21, 233-241, doi:10.1590/S1677-04202009000300007 DOI: https://doi.org/10.1590/S1677-04202009000300007
Mittal, S., Kumari, N., Sharma, V. (2012). Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiology and Biochemistry, 54, 17-26, doi:10.1016/j.plaphy.2012.02.003 DOI: https://doi.org/10.1016/j.plaphy.2012.02.003
Mittler, R., & Zilinskas, B.A. (1993). Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate- dependent reduction of nitroblue tetrazolium. Analytical Biochemistry, 212, 540-546, doi:10.1006/abio.1993.1366 DOI: https://doi.org/10.1006/abio.1993.1366
Moussa, H.R., El-Fatah, A., Ahmed, M. (2010). Protective role of selenium on development and physiological responses of Vi¬cia faba. International Journal of Vegetable Science, 16, 174-183, doi:10.1080/19315260903375137 DOI: https://doi.org/10.1080/19315260903375137
Mukherjee, S.P., & Choudhuri, M.A. (1983). Implications of Water Stress-Induced Changes in the Leaves of Endogenous Ascorbic Acid and Hydrogen peroxide in Vigna Seedlings. Physiologia Plantarum, 58, 166-170, doi: 10.1111/j.1399-3054.1983.tb04162. DOI: https://doi.org/10.1111/j.1399-3054.1983.tb04162.x
Nadgórska-Socha, A., Kafel, A., Kandziora-Ciupa, M., Gospodarek, J., Zawisza-Raszka, A. (2013). Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environmental Science and Pollution Research, 20, 1124-1134, doi: 10.1007/s11356-012-1191-7x. DOI: https://doi.org/10.1007/s11356-012-1191-7
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880, doi:10.1093/oxfordjournals.pcp.a076232
Pilon-smits, E.A.H., Hwang, S., Lytle, C.M., Zhu, Y., Tai, J.C., Bravo, R.C., Chen, Y., Leustek, T., Terry, N. (1999). Overexpression of ATP sulfurylasein Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiology, 119, 123-132, doi:10.1104/pp.119.1.123. DOI: https://doi.org/10.1104/pp.119.1.123
Poblaciones, M.J., Rodrigo, S., Santamaria, O., Chen, Y., McGrath, S.P. (2014). Selenium accumulation and sepeciationin biofortified chickpea (Cicer arietinum L.) under Mediterrenean conditions. Journal of the Science of Food and Agriculture, 94(6), 1101-1106, doi:10.1002/jsfa.6372 DOI: https://doi.org/10.1002/jsfa.6372
Salekjalali, M., Haddad, R., Jafari, B. (2012). Effects of soil water shortages on the activity of antioxidant enzymes and the contents of chlorophylls and proteins in barley. American-Eurasian Journal of Agricultural & Environmental Sciences. 12, 57-63.
Seppänen, M., Turakainen, M., Hartikainen, H. (2003). Selenium effects on oxidative stress in potato. Plant Science, 165, 311-319. doi:10.1016/S0168-9452(03)00085-2 DOI: https://doi.org/10.1016/S0168-9452(03)00085-2
Shabala, S. (2013). Learning from halophytes: physiological basis and DOI: https://doi.org/10.1093/aob/mct205
strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112, 1209-1221, doi:10.1093/aob/mct205
Sumithra, K., Jutur, P.P., Carmel B.D., Reddy A.R. (2006). Salinity-induced changes in two cultivars of Vigna radiata: Responses of antioxidative and proline metabolism. Plant Growth Regulation, 50, 11-22, doi:10.1007/s10725-006-9121-7 DOI: https://doi.org/10.1007/s10725-006-9121-7
Tavakkoli, E., Rengasamy, P., McDonald, G.K. (2010). High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61, 4449-4459, doi:10.1093/jxb/erq251 DOI: https://doi.org/10.1093/jxb/erq251
Terry, N., Zayed, A.M., De Souza, M.P., Tarun, A.S. (2000). Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 401-432, doi:10.1146/annurev.arplant.51.1.401 DOI: https://doi.org/10.1146/annurev.arplant.51.1.401
Tsai, Y.C., Hong, C.Y., Liu, L.F., Kao, C.H. (2004). Relative importance of Na+ and Cl– in NaCl-induced antioxidant systems in roots of rice seedlings. Physiologia Plantarum, 122, 86-94, doi:10.1007/s11738-016-2191-x DOI: https://doi.org/10.1111/j.1399-3054.2004.00387.x
Walaa, A.E., Shatlah, M.A., Atteia, M.H., Sror, H.A.M. (2010). Selenium induces antioxidant defensive enzymes and promotes tolerance against salinity stress in cucumber seedlings (Cucumis sativus L). Arab Universities Journal of Agricultural Sciences, 18, 65-76. DOI: https://doi.org/10.21608/ajs.2010.14917
Wang, Y.D., Wang, X., Wong, Y.S. (2012). Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. Journal of Proteomics, 75, 184-1866. doi:10.1016/j.jprot.2011.12.030 DOI: https://doi.org/10.1016/j.jprot.2011.12.030
Woodbury, W., Spencer, A.K., Stahmann, M.A. (1971). An improved procedure using ferricyanide for detecting catalase isozymes. Analytical Biochemistry, 44, 301-305, doi:10.1016/0003-2697(71)90375-7 DOI: https://doi.org/10.1016/0003-2697(71)90375-7
Xue, T.L., Hartikainen, H., Piironen, V. 2001. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil, 237, 55-61. doi:10.1023/A:1013369804867 DOI: https://doi.org/10.1023/A:1013369804867
Yildiztugay, E., Ozfidan-Konakci, C., Kucukoduk, M., Tekis, S.A. (2016). The impact of selenium application on enzymatic and non-enzymatic antioxidant systems in Zea mays roots treated with combined osmotic and heat stress. Archives of Agronomy and Soil Science, 63, 261-275, doi:10.1080/03650340.2016.1201810 DOI: https://doi.org/10.1080/03650340.2016.1201810
Yen, H.C., Oberley, T.D., Vichitbandha, S., Ho, Y.S., St. Clair, D.K. (1996). The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. The Journal of Clinical Investigation, 98(5), 1253, doi:10.1172/JCI118909 DOI: https://doi.org/10.1172/JCI118909
Yu, C.W., Murphy, T.M., Lin, C.H. (2003). Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Functional Plant Biology, 30, 955-963, doi:10.1071/FP03091 DOI: https://doi.org/10.1071/FP03091
Downloads
Published
Issue
Section
License
Copyright (c) 2017 AKANKSHA SAO, PRIYA SARAF, DIVYA BAGCHI

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.