Effects of mild and severe drought stress on the biomass, phenolic compounds production and photochemical activity of Aloe vera (L.) Burm.f.
DOI:
https://doi.org/10.14720/aas.2018.111.2.19Keywords:
Aloe vera leaves, carotenoids, leaf thickness, photosystem II performance index, vanillic acid, drought stressAbstract
In this study, the biomass, compatible solutes, PSII functioning and phenolic profiles of Aloe vera (L.) Burm.f. leaves were investigated at different time intervals after drought stress (20, 40 and 80 % of the field capacity). While the impaired ability of leaves for synthesis of assimilates caused growth inhibition in A. vera under severe drought stress, we observed that the content of proline, soluble sugars, total phenolic and flavonoids tended to increase in plants treated with mild drought stress. Under mild drought stress, the increased leaf thickness correlated with the higher productivity in terms of leaf biomass and gel production. Also, mild drought stress enhanced photochemical activity in Aloe leaves, and changed the entire quantity of secondary metabolite of vanillic acid produced, which may be considered to obtain better growth and considerable secondary metabolite of the medicinal Aloe plants treated with mild drought stress.
References
Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161–175. doi:10.3109/07388550903524243 DOI: https://doi.org/10.3109/07388550903524243
Aladedunye, F. A., Okorie, D. A., Ighodaro, O. M. (2008). Anti-inflammatory and antioxidant activities and constituents of Platostoma africanum P. Beauv. Natural Product Research, 22(12), 1067–1073. doi:10.1080/14786410802264004 DOI: https://doi.org/10.1080/14786410802264004
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. doi:10.1016/0003-2697(76)90527-3 DOI: https://doi.org/10.1016/0003-2697(76)90527-3
Bohnert, H. J., Nelson, D. E., Jensen, R. G. (1995). Adaptations to environmental stresses. The Plant Cell, 7(7), 1099. doi:10.1105/tpc.7.7.1099 DOI: https://doi.org/10.2307/3870060
Cazzonelli, C. I., Pogson, B. J. (2010). Source to sink: regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15, 266–274. doi:10.1016/j.tplants.2010.02.003 DOI: https://doi.org/10.1016/j.tplants.2010.02.003
Chiang, L.C., Ng, L.T., Chiang, W., Chang, M.Y., Lin, C.C. (2003). Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species. Planta Medica, 69, 600–604. doi:10.1055/s-2003-41113 DOI: https://doi.org/10.1055/s-2003-41113
Cousins, S.R., Witkowski, E.T.F. (2012). African aloe ecology: a review. Journal of Arid Environments, 85, 1–17. doi:10.1016/j.jaridenv.2012.03.022 DOI: https://doi.org/10.1016/j.jaridenv.2012.03.022
Delatorre-herrera, J., Delfino, I., Salinas, C., Silva, H., Cardemil, L. (2010). Irrigationrestriction effects on water use efficiency and osmotic adjustment in Aloe vera plants (Aloe barbadensis Miller). Agricultural Water Management, 97, 1564–1570. doi:10.1016/j.agwat.2010.05.008 DOI: https://doi.org/10.1016/j.agwat.2010.05.008
Diao, M., Ma, L., Wang, J., Cui, J., Fu, A., Liu, H. Y. (2014). Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. Journal of Plant Growth Regulation, 33(3), 671–682. doi:10.1007/s00344-014-9416-2 DOI: https://doi.org/10.1007/s00344-014-9416-2
Gengmao, Z., Shihui, L., Xing, S., Yizhou, W., Zipan, C. (2015). The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress. Scientific Reports, 5, 12696. doi:10.1038/srep12696 DOI: https://doi.org/10.1038/srep12696
Gill, S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930. doi:10.1016/j.plaphy.2010.08.016 DOI: https://doi.org/10.1016/j.plaphy.2010.08.016
Habibi, G., Hajiboland, R. (2012). Comparison of photosynthesis and antioxidative protection in Sedum album and Sedum stoloniferum (Crassulaceae) under water stress. Photosynthetica, 50, 508–518. doi:10.1007/s11099-012-0066-y DOI: https://doi.org/10.1007/s11099-012-0066-y
Habibi, G., Ajory, N. (2015). The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes. Journal of Plant Research, 128(6), 987–994. doi:10.1007/s10265-015-0748-1 DOI: https://doi.org/10.1007/s10265-015-0748-1
Habibi, G. (2016). The role of crassulacean acid metabolism induction in plant adaptation to water deficit. In: Water Stress and Crop Plants: A Sustainable Approach, 12–23. doi:10.1002/9781119054450.ch2 DOI: https://doi.org/10.1002/9781119054450.ch2
Hazrati, S., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Modarres-Sanavy, S. A. M., Mohammadi, H., Nicola, S. (2017). Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agricultural Water Management, 181, 66–72. doi:10.1016/j.agwat.2016.11.026 DOI: https://doi.org/10.1016/j.agwat.2016.11.026
Irigoyen, J. J., Einerich, D. W., & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiologia plantarum, 84(1), 55-60. doi:10.1111/j.1399-3054.1992.tb08764.x DOI: https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
Jarvis, C. E., & Walker, J. R. (1993). Simultaneous, rapid, spectrophotometric determination of total starch, amylose and amylopectin. Journal of the Science of Food and Agriculture, 63(1), 53-57. doi:10.1002/jsfa.2740630109 DOI: https://doi.org/10.1002/jsfa.2740630109
Kalaji, H. M., Bosa, K., Kościelniak, J., Żuk-Gołaszewska, K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 73, 64–72. doi:10.1016/j.envexpbot.2010.10.009 DOI: https://doi.org/10.1016/j.envexpbot.2010.10.009
Kooyers, N.J. (2015). The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science, 234, 155–162. doi:10.1016/j.plantsci.2015.02.012 DOI: https://doi.org/10.1016/j.plantsci.2015.02.012
Kranner, I., Minibayeva, F. V., Beckett, R. P., Seal, C. E. (2010). What is stress? Concepts, definitions and applications in seed science. New Phytologist, 188(3), 655–673. doi:10.1111/j.1469-8137.2010.03461.x DOI: https://doi.org/10.1111/j.1469-8137.2010.03461.x
Krizek, D. T., Kramer, G. F., Upadhyaya, A., Mirecki, R. M. (1993). UV‐B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Physiologia Plantarum, 88(2), 350–358. doi:10.1111/j.1399-3054.1993.tb05509.x DOI: https://doi.org/10.1111/j.1399-3054.1993.tb05509.x
Król, A., Amarowicz, R., Weidner, S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiologiae Plantarum, 36(6), 1491–1499. doi:10.1007/s11738-014-1526-8 DOI: https://doi.org/10.1007/s11738-014-1526-8
Lee, J. H., Cho, K. M. (2012). Changes occurring in compositional components of black soybeans maintained at room temperature for different storage periods. Food Chemistry, 131(1), 161–169. doi:10.1016/j.foodchem.2011.08.052 DOI: https://doi.org/10.1016/j.foodchem.2011.08.052
Leal, L.K.A.M., Pierdoná, T.M., Góes, J.G.S., Fonsêca, K.S., Canuto, K.M., Silveira, E.R., Bezerra, A.M.E., Viana, G.S.B. (2011). A comparative chemical and pharmacological study of standardized extracts and vanillic acid from wild and cultivated Amburana cearensis AC Smith. Phytomedicine, 18(2-3), 230–233. doi:10.1016/j.phymed.2010.05.012 DOI: https://doi.org/10.1016/j.phymed.2010.05.012
Lee, Y. H., Kim, B., Kim, S., Kim, M. S., Kim, H., Hwang, S. R., Lee, J. H. (2017). Characterization of metabolite profiles from the leaves of green perilla (Perilla frutescens) by ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and screening for their antioxidant properties. Journal of Food and Drug Analysis, 25(4), 776–788. doi:10.1016/j.jfda.2016.09.003 DOI: https://doi.org/10.1016/j.jfda.2016.09.003
Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 591–592. doi:10.1042/bst0110591 DOI: https://doi.org/10.1042/bst0110591
Lopez, A., de Tangil, M. S., Orellana, O. V., Ramirez, A. S., Rico, M. (2013). Phenolic constituents, antioxidant and preliminary anti-mycoplasmic activities of leaf skin and flowers of Aloe vera. Molecules, 18, 4942–4954. doi:10.3390/molecules18054942 DOI: https://doi.org/10.3390/molecules18054942
Lucini, L., Pellizzoni, M., Molinari, G. Pietro, (2013). Anthraquinones and polysaccharides content and distribution in Aloe plants grown under different light intensities. Biochemical Systematics and Ecology, 51, 264–268. doi:10.1016/j.bse.2013.09.007 DOI: https://doi.org/10.1016/j.bse.2013.09.007
Quan, N.T., Anh, L.H., Khang, D.T., Tuyen, P.T., Toan, N.P., Minh, T.N., Bach, D.T., Ha, P.T.T., Elzaawely, A.A., Khanh, T.D., Trung, K.H. (2016). Involvement of secondary metabolites in response to drought stress of rice (Oryza sativa L.). Agriculture, 6(2), 23. doi:10.3390/agriculture6020023 DOI: https://doi.org/10.3390/agriculture6020023
Ma, D., Sun, D., Wang, C., Li, Y., Guo, T. (2014). Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 80, 60–66. doi:10.1016/j.plaphy.2014.03.024 DOI: https://doi.org/10.1016/j.plaphy.2014.03.024
Meda, A., Lamien, C. E., Romito, M., Millogo, J., Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571–577. doi:10.1016/j.foodchem.2004.10.006 DOI: https://doi.org/10.1016/j.foodchem.2004.10.006
Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V., Van Breusegem, F. (2011). ROS signaling: the new wave? Trends in Plant Science, 16, 300–309. doi:10.1016/j.tplants.2011.03.007 DOI: https://doi.org/10.1016/j.tplants.2011.03.007
Miura, K., Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5, 4–12. doi:10.3389/fpls.2014.00004 DOI: https://doi.org/10.3389/fpls.2014.00004
Naczk, M., Shahidi, F. (2004). Extraction and analysis of phenolic in food. Journal of Chromatography A, 1054, 95–111. doi:10.1016/S0021-9673(04)01409-8 DOI: https://doi.org/10.1016/S0021-9673(04)01409-8
Ray, A., Dutta Gupta, S., Ghosh, S., Aswatha, S.M., Kabi, B. (2013). Chemometricstudies on mineral distribution and microstructure analysis of freeze-dried Aloe vera L. gel at different harvesting regimens. Industrial Crops and Products, 51, 194–201. doi:10.1016/j.indcrop.2013.08.080 DOI: https://doi.org/10.1016/j.indcrop.2013.08.080
Salinas, C., Handford, M., Pauly, M., Dupree, P., Cardemil, L. (2016). Structural modifications of fructans in Aloe barbadensis Miller (Aloe vera) grown under water stress. PloS One, 11(7), e0159819. doi:10.1371/journal.pone.0159819 DOI: https://doi.org/10.1371/journal.pone.0159819
Sankar, B., Jaleel, C.A., Manivannan, P., Kishorekumar, A., Somasundaram, R., Panneerselvam, R. (2007). Drought-induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench. Acta Botanica Croatica, 66(1), 43–56.
Sathyaprabha, G., Kumaravel, S., Ruffina, D., Praveenkumar, P. A. (2010). comparative study on antioxidant, proximate analysis, antimicrobial activity and phytochemical analysis of Aloe vera and Cissus quadrangularis by GC-MS. Journal of Pharmacy Research, 3, 2970–2973.
Silva, H., Sagardia, S., Seguel, O., Torres, C., Tapia, C., Franck, N., Cardemil, L. (2010). Effect of water availability on growth and water use efficiency for biomass and gel production in Aloe vera (Aloe barbadensis M.). Industrial Crops and Products, 31(1), 20–27. doi:10.1016/j.indcrop.2009.08.001 DOI: https://doi.org/10.1016/j.indcrop.2009.08.001
Silva, H., Sagardia, S., Ortiz, M., Franck, N., Opazo, M., Quiroz, M., Baginsky, C., Tapia, C. (2014). Relationships between leaf anatomy, morphology, and water useefficiency in Aloe vera (L) Burm as a function of water availability. Revista Chilena de Historia Natural, 87 (13), 1–10. DOI: https://doi.org/10.1186/s40693-014-0013-3
Strasser, R. J., Tsimilli-Michael, M., Srivastava, A. (2004). Analysis of the chlorophyll a fluorescence transient. In: Chlorophyll a fluorescence. Springer Netherlands 321–362. doi:10.1007/978-1-4020-3218-9_12 DOI: https://doi.org/10.1007/978-1-4020-3218-9_12
Su, L., Dai, Z., Li, S., Xin, H. (2015). A novel system for evaluating drought–cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biology, 11, 82. doi:10.1186/s12870-015-0459-8 DOI: https://doi.org/10.1186/s12870-015-0459-8
Takahashi, S. Badger, M.R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science, 31, 53–60. doi:10.1016/j.tplants.2010.10.001 DOI: https://doi.org/10.1016/j.tplants.2010.10.001
Van Heerden, P. D. R., Swanepoel, J. W., Krüger, G. H. J. (2007). Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany, 61(2), 124–136. doi:10.1016/j.envexpbot.2007.05.005 DOI: https://doi.org/10.1016/j.envexpbot.2007.05.005
Velikova, V., Yordanov, I., Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59–66. doi:10.1016/S0168-9452(99)00197-1 DOI: https://doi.org/10.1016/S0168-9452(99)00197-1
Velioglu, Y. S., Mazza, G., Gao, L., Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113–4117. doi:10.1021/jf9801973 DOI: https://doi.org/10.1021/jf9801973
Weidner, S., Karolak, M., Karamac, M., Kosinska, A., Amarowicz, R. (2009). Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera L.) under drought stress followed by recovery. Acta Societatis Botanicorum Poloniae, 78(2), 97–103. doi:10.5586/asbp.2009.013 DOI: https://doi.org/10.5586/asbp.2009.013
Wu, Z. Z., Ying, Y. Q., Zhang, Y. B., Bi, Y. F., Wang, A. K.,Du, X. H. (2018). Alleviation of drought stress in Phyllostachys edulis by N and P application. Scientific Reports, 8(1), 228. doi:10.1038/s41598-017-18609-y DOI: https://doi.org/10.1038/s41598-017-18609-y
Yen, G. C., Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27–32. doi:10.1021/jf00049a007 DOI: https://doi.org/10.1021/jf00049a007
Zhang, G., Liu, Y., Ni, Y., Meng, Z., Lu, T., Li, T. (2014). Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. PloS One, 9(5), e97322. doi:10.1371/journal.pone.0097322 DOI: https://doi.org/10.1371/journal.pone.0097322
Zhang, B., Deng, Z., Ramdath, D. D., Tang, Y., Chen, P. X., Liu, R, Tsao, R. (2015). Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chemistry, 172, 862–872. doi:10.1016/j.foodchem.2014.09.144 DOI: https://doi.org/10.1016/j.foodchem.2014.09.144
Zhou, X. J., Yan, L. L., Yin, P. P., Shi, L. L., Zhang, J. H., Liu, Y. J., Ma, C. (2014). Structural characterisation and antioxidant activity evaluation of phenolic compounds from cold-pressed Perilla frutescens var. arguta seed flour. Food chemistry, 164, 150–157. doi:10.1016/j.foodchem.2014.05.062 DOI: https://doi.org/10.1016/j.foodchem.2014.05.062
Zucker, M. (1965). Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiology, 40, 779. doi:10.1104/pp.40.5.779 DOI: https://doi.org/10.1104/pp.40.5.779
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Ghader Habibi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.