Salt overly sensitive 1 (SOS1) gene expression can be regulated via Azospirillum brasilense Sp7 in wheat seedlings under saline condition

Authors

  • Hamid Reza GHASSEMI Department of Biology, University of Isfahan, Iran
  • Akbar MOSTAJERAN Plant Science Division, Biology Department, University of Isfahan, Isfahan, Iran
  • Abolghasem ESMAEILI Cell and Molecular Biology, Biology Department, University of Isfahan, Isfahan, Iran

DOI:

https://doi.org/10.14720/aas.2018.111.2.17

Keywords:

Azospirillum, wheat, salinity, TaSOS1, Na / K ratio

Abstract

Salinity stress reduces plant growth via failure of physiological processes mainly due to the abundance of Na+ ion. Salt overly sensitive (SOS) signaling pathway is considered as an important component of Na+/K+ homeostasis system in plants, especially under saline condition. Moreover, it is reported that wheat-Azospirillum associated has resulted in an enhanced salinity tolerance. To evaluate involvement of Azospirillum species in regulation of SOS signaling pathway, inoculated and none-inoculated wheat seedlings with Azospirillum brasilense Sp7 were grown for five days. Then uniform seedlings were transferred into saline hydroponic media with and without 200 mM NaCl. The relative expression of TaSOS1 of root, sheath, and blade as well as Na+/K+ ratio was measured after 6, 24 and 48 hours since inoculated and non-inoculated seedling were transferred to NaCl media. Simultaneously Ca, Fe, proline content, root and shoot dry mass and soluble sugars were measured at 72 hour after application of NaCl. Result showed that salinity increased TaSOS1 gene expression, Na+, prolin and Na+/K+ ratio but Ca and Fe were decreased in root and shoot of wheat seedlings. Although A. brasilense Sp7 could improve salinity tolerance in wheat via reduction of Na uptake and upregulation of TaSOS1 expression, but do not have any effect in sodium distribution within plant parts. Therefore, salinity could increase TaSOS1 expression in the root, sheath and blade and A. brasilense Sp7 also could reduce the adverse effect of salinity via addition of over expression of TaSOS1.

References

Akbarimoghaddam, H., Galavi, M., Ghanbari, A., & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars, Trakia journal of Sciences, 9(1), 43-50.

Amini, F., Askary, M., Haghir, M., & Ghassemi, H. R. (2017). Changes in antioxidant system and oxidative stress under water stress in four cucumber cultivars. Indian Journal of Plant Physiology, 22(1), 114-119. doi:10.1007/s40502-017-0285-0

Amooaghaie, R., Mostajeran, A., & Emtiazi, G. (2002). The effect of compatible and incompatible Azospirillum brasilense strains on proton efflux of intact wheat roots, Plant and soil, 243(2),155-160.

Ardakani, M.R., Mazaheri, D., Mafakheri, S., & Moghaddam, A. (2011). Absorption efficiency of N, P, K through triple inoculation of wheat (Triticum Aestivum L.) by Azospirillum brasilense, Streptomyces sp., Glomus intraradices and manure application, Physiology and molecular biology of plants : an international journal of functional plant biology, 17(2), 181-192.

Askary, M., Mostajeran, A., & Emtiazi, G. (2008). Colonization and nitrogenase activity of Triticum aestivum (cv. Baccross and Mahdavi) to the dual inoculation with Azospirillum brasilense and Rhizobium meliloti plus 2,4-D. Pakistan Journal of Biological Sciences, 11(12), 1541-1550.

Askary, M., Mostajeran, A., Amooaghaei, R., & Mostajeran, M. (2009). Influence of the co-inoculation Azospirillum brasilense and Rhizobium meliloti plus 2, 4-D on grain yield and N, P, K content of Triticum aestivum (cv. Baccros and Mahdavi), American-Eurasian Journal Agriculture Environment Science, 5, 296-307.

Askary, M., Talebi, S. M., Amini, F., & Bangan, A. D. B. (2017). Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija, 63(1), 65-75.

Baniaghil, N., Arzanesh, M., Ghorbanli, M., & Shahbazi, M. (2013). The effect of plant growth promoting rhizobacteria on growth parameters, antioxidant enzymes and microelements of canola under salt stress, J Appl Environment Biology Science, 3, 17-27.

Bates, L., Waldren, R., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/BF00018060

Camilios-Neto, D., Bonato, P., Wassem, R., Tadra-Sfeir, M.Z., Brusamarello-Santos, L.C.C., Valdameri, G., Donatti, L., Faoro, H., Weiss, V.A., Chubatsu, L.S., Pedrosa, F.O., & Souza, E.M. (2014). Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes, BMC Genomics, 15(1), 378.

Creus, C.M., Sueldo, R.J., & Barassi, C.A. (1997). Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses, Plant physiology and biochemistry-paris, 35, 939-944.

Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137(3), 807-818. doi:10.1104/pp.104.057307

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances, Analytical Chemistry, 28(3), 350-356.

El-Dengawy, E., Hussein, A.A., & Alamri, S.A. (2011). Improving growth and salinity tolerance of carob seedlings (Ceratonia siliqua L.) by Azospirillum inoculation, American-Eurasian Journal of Agricultural & Environmental Sciences, 11(3), 371-384.

El-Hendawy, S.E., Hu, Y., Yakout, G.M., Awad, A.M., Hafiz, S.E., & Schmidhalter, U. (2005). Evaluating salt tolerance of wheat genotypes using multiple parameters, European journal of agronomy, 22 (3), 243-253.

Feki, K., Brini, F., Ben Amar, S., Saibi, W., & Masmoudi, K. (2014). Comparative functional analysis of two wheat Na+/H+ antiporter SOS1 promoters in Arabidopsis thaliana under various stress conditions, Journal of Applied Genetics, 56(1), 15-26.

Fraile ‐Escanciano, A., Kamisugi, Y., Cuming, A. C., Rodríguez‐Navarro, A., & Benito, B. (2010). The SOS1 transporter of Physcomitrella patens mediates sodium efflux in planta. New Phytologist, 188(3), 750-761. doi:10.1111/j.1469-8137.2010.03405.x

Hamdia, M.A.E.-S., Shaddad, M., & Doaa, M.M. (2004). Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions, Plant Growth Regulation, 44(2), 165-174.

Heuer, B. (2010). Role of proline in plant response to drought and salinity, Handbook of plant and crop stress. CRC Press, Boca Raton, 213-238.

Hoagland, D.R., & Arnon, D.I. (1950). The water-culture method for growing plants without soil, Circular. California Agricultural Experiment Station, 347 (2nd edit).

Kang, S.-M., Khan, A.L., Waqas, M., You, Y.-H., Kim, J.-H., Kim, J.-G., Hamayun, M., & Lee, I.-J. (2014). Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus, Journal of Plant Interactions, 9(1), 673-682.

Lekshmy, S., Sairam, R., & Kushwaha, S. (2013). Effect of long-term salinity stress on growth and nutrient uptake in contrasting wheat genotypes. Indian Journal of Plant Physiology, 18(4), 344-353. doi:10.1007/s40502-014-0059-x

Maghsoudi, K., & Arvin, M.J. (2010). Salicylic acid and osmotic stress effects on seed germination and seedling growth of wheat (Triticum aestivum L.) cultivars, World Applied Sciences Journal, 2(1), 7-11.

Mostajeran, A., & Gholaminejad, A. Effect of salinity on sodium & potassium uptake and proline, carbohydrates contents of turmeric plant parts, Journal of Current Chemical & Pharmaceutical Sciences, 4(1) (1), 10-21.

Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., & Shahzad, S. (2006). Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress, Soil Environment, 25 (2), 78-84.

Neumann, P.M. (1995). The role of cell wall adjustments in plant resistance to water deficits, Crop Science, 35 (5), 1258-1266.

Norastehnia, A., Niazazari, M., Sarmad, J., & Rassa, M. (2014). Effects of chloride salinity on non-enzymatic antioxidant activity, proline and malondialdehyde content in three flue-cured cultivars of Tobacco, Journal of Plant Development, 21.

Öğüt, M., Akdağ, C., Düzdemir, O., & Sakin, M.A. (2005). Single and double inoculation with Azospirillum/Trichoderma: the effects on dry bean and wheat, Biology and Fertility of Soils, 41(4), 262-272.

Omar, M.N.A., Osman, M.E.H., Kasim, W.A., & Abd El-Daim, I.A. (2009). Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense, chapter title, in: Ashraf, M., Ozturk, M., Athar, H.R. (Eds.), Salinity and Water Stress: Improving Crop Efficiency. Springer Netherlands, Dordrecht, pp. 133-147.

doi:10.1007/978-1-4020-9065-3_15

Pakdaman, N., Mostajeran, A., & Hojati, Z. (2014). Phosphate concentration alters the effective bacterial quorum in the symbiosis of Medicago truncatula-Sinorhizobium meliloti, Symbiosis, 62(3), 151-155.

Pessarakli, M., & Huber, J. (1991). Biomass production and protein synthesis by alfalfa under salt stress, Journal of Plant Nutrition, 14(3), 283-293.

Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT–PCR, Nucleic Acids Research, 29(9), e45-e45.

Ramezani, A., Niazi, A., Abolimoghadam, A.A., Babgohari, M.Z., Deihimi, T., Ebrahimi, M., Akhtardanesh, H., & Ebrahimie, E. (2013). Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress, Molecular Biotechnology, 53(2), 189-197.

Sathee, L., Sairam, R. K., Chinnusamy, V., & Jha, S. K. (2015). Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat. Acta physiologiae plantarum, 37(8), 169-179. doi:10.1007/s11738-015-1910-z

Shi, H., Quintero, F.J., Pardo, J.M., & Zhu, J.-K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants, The Plant Cell, 14(2), 465-477.

Shi, H., & Zhu, J.-K. (2002). Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid, Plant molecular biology, 50(3), 543-550.

Tavakoli, M., Poustini, K., & Alizadeh, H. (2016). Proline accumulation and related genes in wheat leaves under salinity stress. Journal of Agricultural Science and Technology, 18(3), 707-716.

Tiwari, J.K., Munshi, A.D., Kumar, R., Pandey, R.N., Arora, A., Bhat, J.S., & Sureja, A.K. (2010). Effect of salt stress on cucumber: Na+/K+ ratio, osmolyte concentration, phenols and chlorophyll content, Acta physiologiae plantarum, 32(1), 103-114.

Turan, N.G. (2008). The effects of natural zeolite on salinity level of poultry litter compost, Bioresource Technology, 99(7), 2097-2101.

Upadhyay, S., Singh, J., & Singh, D. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21(2), 214-222. doi:10.1016/S1002-0160(11)60120-3

Upadhyay, S.K., Singh, J.S., Saxena, A.K., & Singh, D.P. (2012). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions, Plant Biology, 14(4), 605-611.

Vargas, L., de Carvalho, T.L.G., Ferreira, P.C.G., Baldani, V.L.D., Baldani, J.I., & Hemerly, A.S. (2012). Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes, Plant and Soil, 356(1), 127-137.

Wakeel, A. (2013). Potassium–sodium interactions in soil and plant under saline-sodic conditions, Journal of Plant Nutrition and Soil Science, 176(3), 344-354.

Xu, H., Jiang, X., Zhan, K., Cheng, X., Chen, X., Pardo, J.M., & Cui, D. (2008). Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast, Archives of Biochemistry and Biophysics, 473(1), 8-15.

Xue, Z.-Y., Zhi, D.-Y., Xue, G.-P., Zhang, H., Zhao, Y.-X., & Xia, G.-M. (2004). Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+, Plant Science, 167(4), 849-859.

Yadav, N.S., Shukla, P.S., Jha, A., Agarwal, P.K., & Jha, B. (2012). The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+loading in xylem and confers salt tolerance in transgenic tobacco, BMC Plant Biology, 12, 188-188.

Zarea, M., Hajinia, S., Karimi, N., Goltapeh, E.M., Rejali, F., & Varma, A. (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl, Soil Biology and Biochemistry, 45, 139-146

Downloads

Published

29. 10. 2018

Issue

Section

Agronomy section

How to Cite

GHASSEMI, H. R., MOSTAJERAN, A., & ESMAEILI, A. (2018). Salt overly sensitive 1 (SOS1) gene expression can be regulated via Azospirillum brasilense Sp7 in wheat seedlings under saline condition. Acta Agriculturae Slovenica, 111(2), 431–443. https://doi.org/10.14720/aas.2018.111.2.17

Similar Articles

1-10 of 1304

You may also start an advanced similarity search for this article.