Glomus intraradices (N.C. Schenck & G.S. Sm.) C. Walker & A. Schuessle enhances nutrients uptake, chlorophyll and essential oil contents and composition in Anethum graveolens L.

Authors

  • Weria WEISANY Science and Research Branch of the Islamic Azad University, Tehran, Iran.

DOI:

https://doi.org/10.14720/aas.2018.111.2.06

Keywords:

arbuscular mycorrhizal fungi, dill, essential oil, medicinal plants, nutrient uptake

Abstract

Arbuscular mycorrhizal (AM) fungi are plant-root symbionts whose application in agriculture has been proven its efficiency. However, their application in medicinal plants and their impact on accumulation of essential oils (EO) is still limited. In order to investigate the effect of AM fungi (Glomus intraradices N.C. Schenck & G.S. Sm.) C. Walker & A. Schuessle) on nutrients uptake, biomass production, yield components, chlorophyll content, and EO content and composition in dill (Anethum graveolens L.), a field experiment was conducted as randomized complete block design with three replications. This medicinal plant was grown under AM fungi colonization and non-colonization treatments. Plant inoculation by mycorrhiza increased aerial tissues P and Fe concentrations. However, K, Ca, and Zn concentrations were not affected by AM colonization. The plants inoculated with AM significantly increased plant biomass, chlorophyll content, and EO content by 363 g m−2, 11.83 SPAD and 0.683 % in comparison with non-inoculated plants, respectively. Changes in EO composition were found in AM-colonized dill plants. The contents of myristicin, dill-ether and N-dihydrocarvone increased in EO obtained from AM-colonized plants, while AM colonization resulted in a lesser content of α-pinene, α-phellandrene, limonene, and β-phellandrene.

Author Biography

  • Weria WEISANY, Science and Research Branch of the Islamic Azad University, Tehran, Iran.
     Department of Agriculture, Science and Research Branch of the Islamic Azad University

References

Abu-Zeyad, R., Khan, A.G., Khoo, C. (1999). Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. and C. Fraser and effects on growth and production of castanospermine. Mycorrhiza, 9, 111–117.

Akiyama, K., Hayashi, H. (2002). Arbuscular mycorrhizal fungus- promoted accumulation of two new triterpenoids in cucumber roots. Bioscience, Biotechnology, and Biochemistry, 66, 762–769. doi:10.1271/bbb.66.762

Al-Karaki, G.N., Clark, R.B. (1998). Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. Journal of Plant Nutrition, 21, 263–276. doi:10.1080/01904169809365401

Arihara, J., Karasawa, T. (2000). Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize. Soil Science and Plant Nutrition, 46, 43–51. doi:10.1080/00380768.2000.10408760

Bedini, S., Pellegrino, E., Avio, L., Pellegrini, S., Bazzoffi, P., Argese, E., Giovannetti, M. (2009). Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biology and Biochemistry, 41, 1491-1496. doi:10.1016/j.soilbio.2009.04.005

Bermudez, M., Azcon, R. (1996). Calcium uptake by alfalfa as modified by a mycorrhizal fungus and liming. Symbiosis, 20, 175–184.

Bethlenfalvay, G.J., Linderman. R.G. (1992). Mycorrhizae in Sustainable Agriculture. USA: ASA Special Publication 54. ISBN 0-89118- 112-1.

Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94, 223–253. doi:10.1016/j.ijfoodmicro.2004.03.022

Calo, J.R. Crandall, P.G. O’Bryan, C.A. Ricke, S.C. (2015). Essential oils as antimicrobials in food systems—A review. Food Control, 54, 111–119. doi:10.1016/j.foodcont.2014.12.040

Chaubey, M.K. (2007). Insecticidal activity of Trachspermum ammi (Umbelliferae), Anethum graveolens (Umbelliferae) and Nigella sativa (Ranunculaceae) essential oils against stored-product beetle Tribolium castaneum Herbst Coleoptra: Tenebrionidae. African Journal of Agricultural Research, 2, 596–600.

Chaudhary, V., Kapoor, R., Bhatnagar, A.K. (2008). Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Applied Soil Ecology, 40, 174–181. doi:10.1016/j.apsoil.2008.04.003

Clark, R.B., Zeto, S.K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition, 23, 867-902. doi:10.1080/01904160009382068

Copetta, A., Lingua, G., Berta, G. (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var: Genovese. Mycorrhiza, 16, 485–494. doi:10.1007/s00572-006-0065-6

Cottenie, A., (1980). Methods of Plant Analysis. In: Soil and Plant Testing. FAO Soils Bulletin 38/2. Pp 64–100.

Devi, M.C., Reddy, M.N., (2002). Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regulation, 37,151–156. doi:10.1023/A:1020569525965

Duke, J.A. (2001). Handbook of Medicinal Herbs. CRC Press LLC, USA, pp. 42.

Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research, 21, 308–323. doi:10.1002/ptr.2072

Farag, R.S., Daw, Z.Y., Abo-Raya, S.H. (1989). Influence of some spice essential oils on Aspetgihs parasiticus and production of aflatoxins in a synthetic medium. Journal of Food Science, 54, 14-76. doi:10.1111/j.1365-2621.1989.tb08571.x

Farahani, A., Lebaschi, H., Hussein, M., Shiranirad, A.H., Valadabadi, A.R., Daneshian, J. (2008). Effects of arbuscular mycorrhizal fungi, different levels of phosphorus and drought stress on water use efficiency, relative water content and proline accumulation rate of Coriander (Coriandrum sativum L.). Journal of Medicinal Plants Research, 2, 125–31.

Fester, T., Hause, B., Schmidt, D., Halfmann, K., Schmidt, J., Wray, V., Hause, G., Strack, D. (2002). Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. Plant Cell Physiology, 43, 256–265. doi:10.1093/pcp/pcf029

Fitter, A.H., Helgason, T., Hodge, A. (2011). Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biology Reviews, 25, 68-72. doi:10.1016/j.fbr.2011.01.002

Freitas, M.S.M., Martins, M.A., Curcino Vieira, I.J., (2004). Yield and quality of essential of Mentha arvensis in response to inoculation with arbuscular mycorrhizal fungi. Pesquisa Agropecuária Brasileira, 39, 887–894. doi:10.1590/S0100-204X2004000900008

Geneva, M.P., Stancheva, I.V., Boychinova, M.M., Mincheva, N.H., Yonova, P.A. (2010). Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. Journal of the Science of Food and Agriculture, 90, 696–702.

Ibrahim, M.H., Jaafar, H.Z.E. (2011). Involvement of carbohydrate, protein and phenylalanine ammonia lyase in up-regulation of secondary metabolites in Labisia pumila under various CO2 and N2 levels. Molecules, 16, 4172–4190. doi:10.3390/molecules16054172

Jefferies, P., Gianinazzi, S., Perotto, S., Turnau, K., Barea, J.M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1–16.

Jones, J.B., Case, V.W. (1990). Sampling, Handling, and Analyzing Plant Tissue Samples. In: Soil Testing and Plant Analysis, Westerman (ed.). Book Series no. 3. Soil Science Society America, Madison WI, pp. 389-427.

Jones, JB Jr. (1972). Plant tissue analysis for micronutrients. p. 319-346. In J.J. Mortvedt, et al. (ed.) Micronutrients in agriculture. Soil Science Society America, Madison, Madison, WI.

Kapoor, R., Chaudhary, V., Bhatnagar. A.K. (2007). Effects of arbuscular and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza, 17, 581–587. doi:10.1007/s00572-007-0135-4

Kapoor, R., Giri, B., Mukerji, K.G. (2002a). Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World Journal of Microbiology and Biotechnology, 18, 459–463. doi:10.1023/A:1015522100497

Kapoor, R., Giri, B., Mukerji, K.G. (2002b). Mycorrhization of coriander (Coriandrum sativum L) to enhance the concentration and quality of essential oil. Journal of the Science of Food and Agriculture, 82, 339–342. doi:10.1002/jsfa.1039

Kapoor, R., Giri. B., Mukerji, K.G. (2004). Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology, 93, 307–311. doi:10.1016/j.biortech.2003.10.028

Karagiannidis, N., Thomidis, T., Lazari, D., Panou-Filotheou, E., Karagiannidou, C. (2011). Effect of three Greek arbuscular mycorrhizal fungi in improving the growth nutrient concentration, and production of essential oils of oregano and mint plants. Scientia Horticulturae, 129, 329–334. doi:10.1016/j.scienta.2011.03.043

Karasawa, T., Kasahara, Y., Takebe, M. (2002). Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 34, 851–857. doi:10.1016/S0038-0717(02)00017-2

Kaschuk, G., Kuyper, T.W., Leffelaar, P.A., Hungria, M., Giller, K.E. (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biology and Biochemistry, 41, 1233–1244. doi:10.1016/j.soilbio.2009.03.005

Khaliq, A., Sanders, F.E. (2000). Effects of arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field grown barley. Soil Biology and Biochemistry, 32, 1691–1696. doi:10.1016/S0038-0717(00)00086-9

Khaosaad, T., Vierheilig, H., Ziltterl-Egleer, K., Novak, J. (2006). Arbuscular mycorrhiza alters the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza, 16, 443–446. doi:10.1007/s00572-006-0062-9

Larose, G., Chenevert, R., Moutoglis, P., Gagne, S., Piché, Y., Vierheilig, H. (2002). Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. Journal of Plant Physiology, 159, 1329–1339. doi:10.1078/0176-1617-00896

Lohse, S., Schliemann, W., Ammer, C., Kopka, J., Strack, D., Fester, T. (2005). Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Journal of Plant Physiology, 139, 329–340. doi:10.1104/pp.105.061457

Loomis, W.D., Corteau, R. (1972). Essential oil biosynthesis. Recent Advances in Phytochemistry, 6, 147–185. doi:10.1016/B978-0-12-612406-4.50012-7

Marschner, H. (1995). Mineral Nutrition of Higher Plants. Academic Press, London.

Mathur, N., Vyas, A. (2000). Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritana Lam. under water stress. Journal of Arid Environments, 45, 191–195. doi:10.1006/jare.2000.0644

McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, D.L., Swan, G.A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist Journals, 115, 495–501. doi:10.1111/j.1469-8137.1990.tb00476.x

Naguib, Y.N., Hussein, M.S., E-Sherbeny, S.E., Khalil, M.Y., Lazari, D. (2007). Response of Ruta graveolens L. to sowing dates and foliar micronutrients. Journal of Applied Sciences Research, 3, 1534–1543.

Nogueira, M.A., Cardoso, E.J.B.N. (2002). Interaccoes microbianas na disponibilidade e absorcao de manganes por soja. Pesquisa Agropecuária Brasileira, 37, 1605–1612. doi:10.1590/S0100-204X2002001100012

Pedone-Bonfim, M.V.L., Lins, M.A., Coelho, I.R., Santana, A.S., Silva, F.S.B., Maia, L.C. (2013). Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. Journal of the Science of Food and Agriculture, 93, 1479–1484. doi:10.1002/jsfa.5919

Perini, M., Paolini, M., Simoni, M., Bontempo, L., Vrhovšek, U., Sacco, M., Thomas, F., Jamin, E., Hermann, A., Camin, F. (2014). Stable isotope ratio analysis for verifying the authenticity of balsamic and wine vinegar. Journal of Agricultural and Food Chemistry, 62(32), 8197-203. doi:10.1021/jf5013538

Phillips, J.M., Hayman, D.S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. British Mycological Society, 55, 158–161. doi:10.1016/S0007-1536(70)80110-3

Piccaglia, R., Dellacecca, V., Marotti, M., Giovanelli, E. (1993). Agronomic factors affecting the yields and the essential oil composition of peppermint (Mentha piperita L.). Acta Horticulturae, 344, 29–40. doi:10.17660/ActaHortic.1993.344.4

Raei, Y., Weisany, W. (2013). Arbuscular mycorrhizal fungi associated with some aromatic and medicinal plants. Bulletin of Environment, Pharmacology and Life Sciences, 2(11), 129–138.

Rao, A.S., (1993). Analysis of soils for available major nutrients, p. 13-35. In: Tan don HLS (Ed.). Methods of analysis of soils, plants, water and fertilizers development and consultation organization, New Delhi, India.

Richardson, A.E., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, A., Smith,

S.E., Harvey, P.R., Ryan, M.H., Veneklaas, E.J., Lambers, H., Oberson, A., Culvenor, R.A., Simpson, R.J. (2011). Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 349, 121-156. doi:10.1007/s11104-011-0950-4

Rillig, M.C., Mummey, D.L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41-53. doi:10.1111/j.1469-8137.2006.01750.x

Robinson, R.L., Postgate, J.R. (1980). Oxygen and nitrogen in biological nitrogen fixation. Annual Review of Microbiology, 34, 182–207.

SAS Institute Inc. (2004). SAS/STAT user’s guide Version 6, fourth ed Statistical Analysis Institute Inc, Cary, North Carolina.

Shende, S., Rai, M. (2010). Role of mycorrhizal fungi in growth promotion of crop. Progress in Mycology. pp 259-292. doi:10.1007/978-90-481-3713-8_9

Simard, W.S., Jones, M.D., Durall, D.M. (2003). Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin. doi:10.1007/978-3-540-38364-2_2

Singh, A., Randhawa, G.S. (1990). Studies on some agronomic inputs affecting oil content, oil and herb yield of dill (Anethum graveolens L.). New Botanist, 17, 111–115.

Smith, M. (2003). Therapeutic applications of fenugreek. Alternative Medicine Review, 8, 20-27.

Smith, S. E. and Read, D. J. (2008). Mycorrhizal Symbiosis. 3 rded, Academic Press, London.

Sohrabi, Y., Heidari, G., Weisany, W., Ghasemi Golezani, K., Mohammadi, K. (2012a). Some physiological responses of chickpea (Cicer aritinum L.) cultivars to arbuscular mycorrhiza under drought stress. Russian Journal of Plant Physiology, 59(6), 708-716. doi:10.1134/S1021443712060143

Sohrabi, Y., Heidari, G., Weisany, W., Ghasemi Golezani, K., Mohammadi, K. (2012b). Changes of antioxidativ eenzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress. Symbiosis, 56, 5-18. doi:10.1007/s13199-012-0152-8

Strack, D., Fester, T. (2006). Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytologist, 172, 22–34. doi:10.1111/j.1469-8137.2006.01837.x

Su, H.C.F., (1985). Laboratory study on effects of Anethum graveolens seed on four species of stored-product insects. Journal of Economic Entomology, 78, 451-453. doi:10.1093/jee/78.2.451

Subrahmanyam, K., Nair, A.K., Chattopadhyay, A., Singh, D.V. (1992). Evaluation of ammonium polyphosphate as phosphorus source in Japanese mint (Mentha arvensis subsp. haplocalyx var. piperascens). Indian Journal of Agricultural Science, 62, 554–556.

Taiz, L., Zeiger, E. (1998). Plant Physiology, second ed. Sinauer Associates, Inc., Sunderland, Massachusetts.

Tandon, H.L.S., Cescas, M.P., Tyner, E.H. (1968). An acid-free vanadate–molybdate reagent for the determination of total phosphorus in soils. Soil Science Society of America Proceedings, 32, 48-51. doi:10.2136/sssaj1968.03615995003200010012x

Tiwari, R.J., Banafar, R.N.S. (1995). Application of nitrogen and phosphorus increases seed yield and essential oil of coriander. Indian Cocoa, Arecanut and Spices Journal, 19, 51–55.

Torelli, A., Trotta, A., Acerbi, I., Arcidiacono, G., Berta, G., Branca, C. (2000). IAA and ZR content in leek (Allium porrum L.) as influenced by P-nutrition and arbuscular mycorrhizae, in relation to plant development. Plant and Soil, 226, 29–35. doi:10.1023/A:1026430019738

Vierheilig, H., Gagnon, H., Strack, D., Maier, W. (2000b). Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza, 9, 291–293. doi:10.1007/PL00009994

Vierheilig, H., Maier, W., Wyss, U., Samson, J., Strack, D., Piché, Y. (2000a). Cyclohexenone derivative- and phosphate-levels in split-root systems and their role in the systemic suppression of mycorrhization in precolonized barley plants. Journal of Plant Physiology, 157, 593–599. doi:10.1016/S0176-1617(00)80001-2

Vokou, D., Vareltzidou, S., Katinakis, P. (1993). Effects of aromatic plants on potato storage: sprout suppression and antimicrobial activity. Agriculture, Ecosystems & Environment, 47, 223- 235. doi:10.1016/0167-8809(93)90124-8

Volpin, H., Eelkind, Y., Okon, Y., Kapulnik, Y. (1994). A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiology, 104, 683–689. doi:10.1104/pp.104.2.683

Walter, M.H., Fester, T., Strack, D. (2000). Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. Plant Journal, 21, 571–578. doi:10.1046/j.1365-313x.2000.00708.x

Weisany, W., Raei, Y., Pertot, I. (2015). Changes in the essential oil yield and composition of dill (Anethum graveolens L.) as response to arbuscular mycorrhiza colonization and cropping system. Industrial Crops and Products, 77, 295–306. doi:10.1016/j.indcrop.2015.09.003

Weisany, W., Raei, Y., Zehtab-Salmasi, S., Ghassemi- Golezani, K. (2016b). Arbuscular mycorrhizal fungi induced changes in rhizosphere, essential oil and mineral nutrients uptake in dill/common bean intercropping system Funneliformis mosseae improved nutrients uptake of intercropped plants. Annals of Applied Biology, 169, 384-397. doi:10.1111/aab.12309

Weisany, W., Zehtab-Salmasi, S., Raei, Y., Sohrabi, Y., Ghassemi- Golezani, K. (2016a). Can arbuscular mycorrhizal fungi improve competitive ability of dill+common bean intercrops against weeds? European Journal of Agronomy, 75, 60–71. doi:10.1016/j.eja.2016.01.006

Wondimu, T., Afar, Z., Kelbessa, E. (2007). Ethnobotanical study of medicinal plants around ‘Dheeraa’ town, Arsi Zone, Ethiopia. Journal of Ethnopharmacology, 112, 152–161. doi:10.1016/j.jep.2007.02.014

Yao, M.K., Désilets, H., Charles, M.T., Boulanger, R., Tweddell, R.J. (2003). Effect of mycorrhization on the accumulation of rhishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza, 13, 333–336. doi:10.1007/s00572-003-0267-0

Yao, Q., Li, X., Feng, G., Christie, P. (2001). Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an arbuscular mycorrhizal fungus. Plant and Soil, 230, 279–285. doi:10.1023/A:1010367501363

Downloads

Published

29. 10. 2018

Issue

Section

Agronomy section

How to Cite

WEISANY, W. (2018). Glomus intraradices (N.C. Schenck & G.S. Sm.) C. Walker & A. Schuessle enhances nutrients uptake, chlorophyll and essential oil contents and composition in Anethum graveolens L. Acta Agriculturae Slovenica, 111(2), 303–313. https://doi.org/10.14720/aas.2018.111.2.06

Similar Articles

1-10 of 573

You may also start an advanced similarity search for this article.