Comparative growth and physiological responses of tetraploid and hexaploid species of wheat to flooding stress

Authors

  • Mohammad Sadegh KHOSRAVI Department of Biology, Faculty of Science, University of Birjand, Birjand, Iran
  • Reza HEIDARI Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
  • Rashid JAMEI Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
  • Seyed Mousa MOUSAVI KOUHI Department of Biology, Faculty of Science, University of Birjand, Birjand, Iran
  • Maryam MOUDI Department of Biology, Faculty of Science, University of Birjand, Birjand, Iran

DOI:

https://doi.org/10.14720/aas.2018.111.2.04

Keywords:

flooding stress, polyploidy, soil water, waterlogging

Abstract

Present study is aimed to comparatively investigate the response of two ploidy levels of wheat including a tetraploid (Triticum turgidum L.) and a hexaploid (Triticum aestivum L.) wheat to different durations of flooding stress. Wheat seedlings were exposed to flooding stress for 0, 3, 6 and 9 days. Results showed that all flooding treatments significantly decreased the shoot and root length, and chlorophyll content of both species of wheat. The decrease in chlorophyll content of tetraploid wheat was more than that of hexaploid one. In both species, ADH activity of root was significantly increased under flooding stress, where the increase was more in hexaploid wheat. Flooding stress did not significantly affect root and shoot water content, root porosity, and shoot protein content of any wheat species. Tetraploid and hexaploid wheat used different mechanisms for better tolerance of flooding condition, where tetraploid wheat increased the proline content but in hexaploid wheat, an increase in soluble sugar content was observed.

References

Aggarwal, P. K., Kalra, N., Chander, S., Pathak, H. A. (2006). Dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agroecosystems in tropical environments. I. Model description. Agricultural Systems, 89, 1-25. doi:10.1016/j.agsy.2005.08.001

Ashraf, M. A. (2012). Waterlogging stress in plants.: A review. African Journal of Agricultural Research, 7(13), 1976-1981.

Aubert, S., Hennion, F., Bouchereau, A., Gout, E., Bligny, R., Dome, A. J. (2004). Subcellular compartmentation of proline in the leaves of the subantarctic kerguelen cabbage Pringlea antiscorbiotica R.Br. invivo C13- NMR study. Plant, Cell & Environment, 22, 255-259. doi:10.1046/j.1365-3040.1999.00421.x

Bacanamwo, M., Purcell L. C. (1999). Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Science, 39, 143-149. doi:10.2135/cropsci1999.0011183X003900010023x

Bates, L., Waldren R. P., Teatre, J. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. doi:10.1007/BF00018060

Bouny, J.M., and Saglio, P. H. (1996). Glycolytic flux and hexokinase activities in anoxic maize root tips acclimated by hypoxic pretreatment. Plant Physiology, 111, 187-194. doi:10.1104/pp.111.1.187

Buchanan, B.B., Gruissem, W., Jones, R.L. (2000). Biochemistry and molecular biology of plants. United Kingdom, Wiley-Blackwell, Lincoln.

Chandrasekar, V., Sairam, R. K., Srivastava, G. C. (2000). Physiological and biochemical responses of hexaploid and tetraploid wheat to drought stress. Journal of Agronomy and Crop Science, 185, 219-227. doi:10.1046/j.1439-037x.2000.00430.x

Davies, M. S., Hillman, C. (1988). Effects of soil flooding on growth and grain yield of populations of tetraploid and hexaploid species of wheat. Annals of Botany, 62, 597-604. doi:10.1093/oxfordjournals.aob.a087699

Donaldson, R. P., Soochan P., Zaras, A. (1985). Anaerobic stress in germinating castor bean, ethanol metabolisem, and effects on subcellular organelles. Plant Physiology, 77, 978-983. doi:10.1104/pp.77.4.978

Drew, M. C. (1997). Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 223-250. doi:10.1146/annurev.arplant.48.1.223

Dubcovsky, J., Dvorak, J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 316 (5833), 1862–1866. doi:10.1126/science.1143986

Fausey, N. R., Van T. T., McDonald, M. B. (1985). Response of ten corn cultivars to flooding. Transactions of the ASAE, 28, 1794-7. doi:10.13031/2013.32520

Fukao, T., Bailey-Serres, J. (2004). Plant responses to anoxia—is survival a balancing act? Trends in Plant Science, 9, 449-456. doi:10.1016/j.tplants.2004.07.005

Gibberd, M. R., Colmer, T. D., Cocks P. S. (1999). Root porosity and oxygen movement in waterlogging-tolerant Trifolium tomentosum and intolerant Trifolium glomeratum. Plant, Cell & Environment, 22, 1161–1168. doi:10.1046/j.1365-3040.1999.00472.x

Guglielminetti, L., Busilacchi, H. A., Rata, P., Alpi, A. (2001). Carbohydrate-ethanol transition in cereal grains under anoxia. New Phytologist, 151, 607-612. doi:10.1046/j.0028-646x.2001.00218.x

Hoffman, N.E., Bent, A.F., Hanson, A.D. (1986). Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue. Plant physiology, 82, 658-663. doi:10.1104/pp.82.3.658

Hsu, F. H., Lin, J. B., Chang, S. R. (2000). Effects of waterlogging on seed germination, electric conductivity of seed leakage and development of hypocotyls and radical in sudan grass. Botanical Bulletin of Academia Sinica, 41, 267-273.

Huang, B., Johnson, J. W., Nesmith, S., Bridges, D. C. (1994). Growth, physiological, and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. Journal of Experimental Botany, 45, 193-202. doi:10.1093/jxb/45.2.193

Huang, B., Johnson, J.W. (1995). Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia. Annals of Botany, 75, 427-432. doi:10.1006/anbo.1995.1041

Hurng, WP, Kao, C. H. (1994). Effect of flooding on the activities of some enzymes of activated oxygen metabolism, the levels of antioxidants, and lipid peroxidation in senescing tobacco leaves. Plant Growth Regulation, 14, 37-44. doi:10.1007/BF00024139

Ismail, A. M., Ella, E. S., Vergara, G. V., and Mackill, D. J. (2009). Mechanisms associated with tolerance for flooding during germination and early seedling growth in rice (Oryza sativa L.). Annals of Botany, 103, 197-209. doi:10.1093/aob/mcn211

Jackson, M. B. (2002). Long-distance signaling from roots to shoots assessed: the flooding story. Journal of Experimental Botany, 53, 175-181. doi:10.1093/jexbot/53.367.175

Jamei, R., Heidari, R., Khara. J., Zare, S. (2008). The interaction effects of flooding and kinetin on growth criteria, chlorophyll content, and 5-aminolevulinic acid dehydratase activity in corn seedlings. Turkish Journal of Biology, 32, 53-257.

Jensen, C. R., Luxmoore, R. J., Van, G. S. D, Stolzy, L. H. (1969). Root air space measurements by a pycnometer method. Agronomy Journal, 61, 474- 475. doi:10.2134/agronj1969.00021962006100030045x

Kozlowski, T. T. (1997). Response of woody plants to flooding and salinity. Tree Physiology, 1, 1-29. doi:10.1093/treephys/17.7.490

Laan, P., Berrevoets, M. J., Lythe, S., Armstrong, W., Blom, C. W. P. M. (1989). Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species. Journal of Ecology, 77, 693_703. doi:10.2307/2260979

Li., Y. P., Li, Y. Y., Li, D. Y., Wang, S. W., Zhang, S. Q. (2017). Photosynthetic response of tetraploid and hexaploid wheat to water stress. Photosynthetica. DOI: 10.1007/s11099-016-0659-y. doi:10.1007/s11099-016-0659-y

Liao, C. T., Lin, C. H. (2001). Physiological adaptation of crop plants to flooding stress. Proceedings of the National Science Council, Republic of China. Part B, 25, 148-157.

Lichtenthaler, H. K., Wellbum, A. R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592. doi:10.1042/bst0110591

Lizaso, J. I., Melendez, L. M., Ramirez, R. (2001). Early flooding of two cultivars of tropical maize. I. Shoot and root growth. Journal of Plant Nutrition, 24, 979-995. doi:10.1081/PLN-100103798

Lowery, O. H., Rosebrough, N. J., Farr, A. L., Randal, R. J. (1951). Protien measurement with the folin phenol regent. The Journal of Biological Chemistry, 163, 265-275.

Mousavi Kouhi, S. M., Lahouti, M., Ganjeali, A. Entezari, M. H. (2014). Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): investigating a wide range of concentrations. Toxicological & Environmental Chemistry, 96 (6), 861–868. doi:10.1080/02772248.2014.994517

Neuman, K. D., Van Toai, T. T. (1991). Developmental regulation and organ specific expression of soybean alcohol dehydrogenase. Crop Science, 31, 1253-1257. doi:10.2135/cropsci1991.0011183X003100050034x

Przywara, G., Stepniewski, W. (2000). Influence of flooding and different temperatures of the soil on gas-filled porosity of pea, maize and winter wheat roots. International Agrophysics, 14, 401-410.

Roberts, J. K. M., Callis, J., Jardetzky, O., Walbot, V., Feeling, M. (1984). Cytoplasmic acidisis as a determinant of flooding intolerant in plants. Proceedings of the National Academy of Sciences, 81, 6029-6033. doi:10.1073/pnas.81.19.6029

Sairam, R. K, Kumutha, D., Ezhilmathi, K., Deshmukh, P. S., Srivastava, G. C. (2008). Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plantarum, 52, 401-412. doi:10.1007/s10535-008-0084-6

Sousa, C. A. F., Sodek, L. (2002). The metabolic response of plants to oxygen deficiency. Brazilian Journal of Plant Physiology, 14 (2), 83-94. doi:10.1590/S1677-04202002000200002

Taiz, L., Zeiger, E. (2010). Plant physiology. Fifth edition. Sunderland, Sinauer.

Vantoai, T., Fausey, N., McDonald, M. (1988). Oxygen requirements for germination and growth of flood-susceptible and flood-tolerant corn line. Crop Science, 28, 79-83.

doi:10.2135/cropsci1988.0011183X002800010019x

Vartapetian, B. B., Jackson, M. B. (1997). Plant adaptations to anaerobic stress. Annals of Botany, 79, 3-20. doi:10.1093/oxfordjournals.aob.a010303

Yordanova, R., Popova, L. 2001. Photosynthetic response of barley plants to soil flooding. Photosynthetica, 39, 515-520. doi:10.1023/A:1015643710177

Yang, C., Zhao, L., Zhang, H., Yang, Z., Wang, H., Wen, S., Zhang, C., Rustgi, S., Wettstein, D. V., Liu, B. (2014). Evolution of physiological responses to salt stress in hexaploid wheat. PNAS, 111 (32), 11882–11887 doi:10.1073/pnas.1412839111.

Downloads

Published

29. 10. 2018

Issue

Section

Agronomy section

How to Cite

KHOSRAVI, M. S., HEIDARI, R., JAMEI, R., MOUSAVI KOUHI, S. M., & MOUDI, M. (2018). Comparative growth and physiological responses of tetraploid and hexaploid species of wheat to flooding stress. Acta Agriculturae Slovenica, 111(2), 285–292. https://doi.org/10.14720/aas.2018.111.2.04

Similar Articles

1-10 of 391

You may also start an advanced similarity search for this article.