Physiological and agronomic responses of maize (Zea maysL) cultivars to plant population and defoliation at post-anthesis in the humid rainforest

Authors

  • Olalekan Suleiman SAKARIYAWO Federal University of Agriculture, Abeokuta, Nigeria
  • Doyin OGUNDIRAN Federal University of Agriculture, Abeokuta, Nigeria
  • Paul SOREMI Federal University of Agriculture, Abeokuta, Nigeria
  • Sunday ADERIBIGBE Federal University of Agriculture, Abeokuta, Nigeria

DOI:

https://doi.org/10.14720/aas.2018.111.2.01

Keywords:

defoliation, open pollinated maize, plant population, current rate of photosynthesis, efficiency of photosynthesis

Abstract

Variations in response pattern of maize (Zea mays)grown at plant populations, defoliated at post-anthesis in the rainforest were tested. Two field trials were conducted at Abeokuta, (Longitude 3025’E, Latitude 7015’N; 144 m a.s.l) and Ibadan (3056’E, 7033’N: 168 m a.s.l), Nigeria in 2015. The trials consisted of maize variety {2009 TZE-W DT STR [open pollinated variety (OPV)] and TZEI 124 × TZEI 25 (hybrid)]} in the main plot, plant population (71111, 80000 and 106666 plant ha-1) in sub plot and defoliation (+ defoliation and – defoliation) as sub-sub plot. It was laid out in a split-split plot arrangement fitted into randomised complete block design with three replicates. OPV had significantly higher assimilatory surface, rate of current photosynthesis, reduced dry matter translocation efficiency, reduced days to 50 % anthesis and more 1000 grain massthan the hybrid maize, with similar grain yields. Both locations experienced increased leaf area index with increased plant population. Reduced 1000 grain massat both locations when maize was defoliated suggested a disruption in source:sink balance.

Author Biographies

  • Olalekan Suleiman SAKARIYAWO, Federal University of Agriculture, Abeokuta, Nigeria

    Department of Pnat Physiology and Crop Production

    Senior Lecturer

  • Doyin OGUNDIRAN, Federal University of Agriculture, Abeokuta, Nigeria
    Department of Pnat Physiology and Crop Production
  • Paul SOREMI, Federal University of Agriculture, Abeokuta, Nigeria
    Department of Pnat Physiology and Crop Production
  • Sunday ADERIBIGBE, Federal University of Agriculture, Abeokuta, Nigeria
    Department of Pnat Physiology and Crop Production

References

Aduayi, E., Chude, V., Adebusuyi, B., Olayiwola, S. (2002). Fertiliser use and management practises for crop in Nigeria (3rd ed.). Abuja: Federal Fertiliser Department, Federal Ministry of Agriculture and Rural Development.

Ahmadi, A., Joudi, M. (2007). Effects of timing and defoliation intensity on growth, yield and gas exchange rate of wheat grown under well-watered and drought conditions. Pakistan Journal of Biology Science, 10(21), 3794–3800. doi:10.3923/pjbs.2007.3794.3800

Allison, L. (1965). Organic carbon. In: C.A Black (Ed.), Methods of soil analysis. Part 2 (pp. 1307–1378). Madison: American Society of Agronomy.

Borrás, L., Maddonni, G. A., Otegui, M. E. (2003). Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Research, 82(1), 13–26. doi:10.1016/S0378-4290(03)00002-9

Borrás, L., Slafer, G. A., Otegui, M. E. (2004). Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 86(2), 131–146. doi:10.1016/j.fcr.2003.08.002

Bouyoucos, G. (1962). Hydrometer method improved for making particle size analysis of soil. Agronomy Journal, 54, 464–465. doi:10.2134/agronj1962.00021962005400050028x

Bray, R., Kurtz, L. (1945). Determination of total, organic and available forms of phosphorus in soil. Soil Science, 59, 39–45. doi:10.1097/00010694-194501000-00006

Dwyer, L.,Stewart, D. (1986). Leaf area development in field grown maize. Agronomy Journal, 78, 334–343. doi:10.2134/agronj1986.00021962007800020024x

Gonzalo, M., Vyn, T. J., Holland, J. B., McIntyre, L. M. (2006). Mapping density response in maize: a direct approach for testing genotype and treatment interactions. Genetics, 173(1), 331–348. doi:10.1534/genetics.105.045757

He, P., Osaki, M., Takebe, M., Shinano, T. (2003). Comparison of whole system of carbon and nitrogen accumulation between two maize hybrids differing in leaf senescence. Photosynthetica, 41(3), 399–405. doi:10.1023/B:PHOT.0000015464.27370.60

Jackson, M. (1962). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt, Ltd.

Kiniry, J. R., Tischler, C. R., Rosenthal, W. D., Gerik, T. J. (1992). Nonstructural carbohydrate utilization by sorghum and maize shaded during grain growth. Crop Science, 32(1), 131–137. doi:10.2135/cropsci1992.0011183X003200010029x

Lemcoff, J. H., Loomis, R. S. (1994). Nitrogen and density influences on silk emergence, endosperm development, and grain yield in maize (Zea mays L.). Field Crops Research, 38(2), 63–72. doi:10.1016/0378-4290(94)90001-9

Liu, T., Gu, L., Dong, S., Zhang, J., Liu, P., Zhao, B. (2015). Optimum leaf removal increases canopy apparent photosynthesis, 13 C-photosynthate distribution and grain yield of maize crops grown at high density. Field Crops Research, 170, 32–39. doi:10.1016/j.fcr.2014.09.015

Maddonni, G. A., Otegui, M. E., Cirilo, A. G.( 2001). Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 71(3), 183–193. doi:10.1016/S0378-4290(01)00158-7

Martin, R. V., Washington, R., Downing, T. E. (2000). Seasonal maize forecasting for South Africa and Zimbabwe derived from an agroclimatological model. Journal of Applied Meteorology, 39(9), 1473–1479. doi:10.1175/1520-0450(2000)039<1473:SMFFSA>2.0.CO;2

McLean, E. O. (1982). Soil pH and lime requirement. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilan2), 199–224.

Moll, R. H., Jackson, W. A., Mikkelsen, R. L. (1994). Recurrent selection for maize grain yield: dry matter and nitrogen accumulation and partitioning changes. Crop Science, 34(4). 874–881. doi:10.2135/cropsci1994.0011183X003400040009x

Murphy, J., Riley, J. P. (1962). A Modified Single Solution Method for Determination of Phosphate in Natural Waters. Analytica Chimica Acta, 27, 31–36. doi:10.1016/S0003-2670(00)88444-5

Papakosta, D., Gayianas, A. (1991). Nitrogen and dry matter accumulation, remobilisation and losses for Mediterranean wheat during grain filling. Agronomy Journal, 83, 864–870. doi:10.2134/agronj1991.00021962008300050018x

Rajcan, I., Tollenaar, M. (1999). Source: sink ratio and leaf senescence in maize: I. Dry matter accumulation and partitioning during grain filling. Field Crops Research, 60(3), 245–253. doi:10.1016/S0378-4290(98)00142-7

Sangoi, L. (2001). Understanding plant density effects on maize growth and development: an important issue to maximize grain yield. Ciência Rural, 31(1), 59–168. doi:10.1590/S0103-84782001000100027

Sarlangue, T., Andrade, F. H., Calviño, P. A., Purcell, L. C. (2007). Why do maize hybrids respond differently to variations in plant density? Agronomy Journal, 99(4), 984–991. doi:10.2134/agronj2006.0205

Squire, G. (1990). The physiology of tropical crop production. Wallingford, UK: CABI.

Thomas H. (1992). Canopy survival. In: N. Baker & H. Thomas (Eds.), Crop Photosynthesis: Spatial and Temporal determinants (pp. 11–41). Amsterdam: Elsevier. doi:10.1016/B978-0-444-89608-7.50009-5

Tollenaar, M., Daynard, T. B. (1982). Effect of source-sink ratio on dry matter accumulation and leaf senesence of maize. Canadian Journal of Plant Science, 62(4), 855–860. doi:10.4141/cjps82-128

Uhart, S. A., Andrade, F. H. (1995). Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios. Crop Science, 35(1), 183–190. doi:10.2135/cropsci1995.0011183X003500010034x

Van Sanford, D., Mackown, C. (1987). Cultivar differences in nitrogen remobilisation during grain filling in soft red winter wheat. Crop Science, 27, 295–300. doi:10.2135/cropsci1987.0011183X002700020035x

Varlet-Grancher, C., Gautier, H. (1995). Plant morphogenetic responses to light quality and consequences for intercropping (Vol. 93, pp. 231–256). Presented at the Symposium International sur l’ Ecophysiologie des cultures Associees Tropicales, Gosier, Guadeloupe, 1-6.

Yin, Y., Wang, Z., He, M., Fu, J., Lu, S. (1998). Postanthesis allocation of photosynthates and grain growth in wheat cultivars as affected by source/sink change. Biologia Plantarum, 41(2), 203–209. doi:10.1023/A:1001854311288

Zhenlin, W., Yanping, Y., Mingrong, H., Hongming, C. (1998). Source-sink manipulation effects on postanthesis photosynthesis and grain setting on spike in winter wheat. Photosynthetica, 35(3), 453–459. doi:10.1023/A:1006976605148

Downloads

Published

29. 10. 2018

Issue

Section

Agronomy section

How to Cite

SAKARIYAWO, O. S., OGUNDIRAN, D., SOREMI, P., & ADERIBIGBE, S. (2018). Physiological and agronomic responses of maize (Zea maysL) cultivars to plant population and defoliation at post-anthesis in the humid rainforest. Acta Agriculturae Slovenica, 111(2), 251–264. https://doi.org/10.14720/aas.2018.111.2.01

Most read articles by the same author(s)