Transferrin gene expression in Salmo sp.


  • Anja ČIBEJ University of Ljubljana, Biotehnical Faculty, Department of Animal Science, Slovenia
  • Simona SUŠNIK BAJEC University of Ljubljana, Biotehnical Faculty, Department of Animal Science, Slovenia



fish, Atlantic salmon, brown trout, marble trout, genetics, transferrin genes, gene expression, promoter


Salmonidae family combines freshwater and anadromous fish species. Duplicates of numerous genomic DNA loci are characteristic for this family, some as a consequence of tetraploidisation, and others as independent doubling of discrete DNA regions. In the genus Salmo, duplication of transferrin gene in Atlantic salmon, brown and marble trout has been demonstrated. The aim of the study was to characterize the promoter region of both genes (TF1 and TF2) in all three species and to determine the ratio of expression of TF1 and TF2 in Atlantic salmon. Applying qPCR we showed that TF2 is expressed in Atlantic salmon six times weaker than TF1. It has been previously shown that the difference in the expression of both genes in brown and marble trout is even higher. The nucleotide sequence was determined for promoter regions of both genes in all species. In promoter region, microsatellite was found, which differs in length as well within species as between TF1 and TF2 locus, and four SNPs that differentiate TF1 and TF2. For Atlantic salmon, longer sequence of promoter region was determined. In TF1 gene, promoter contains a minisatellite, comprised of 37 bp long motif with over 20 replicates, while in TF2 minisatellite is not present. Analyzing potential binding sites in promoter region, functional elements for regulation of transferrin gene expression were found.


Allendorf, F. W., & Thorgaard, G. H. (1984). Tetraploidy and the evolution of Salmonid fishes. V: B. J. Turner (ur.), Evolutionary Genetics of fishes (str. 1–53). Virginia: Plenum Press.

Andersen, Ø., DeRosa, M. C., Pirolli, D., Tooming-Klunderud, A., Petersen, P.E., & Andre, C. (2011). Polymorphism, selection and tandem duplication of transferrin genes in Atlantic cod (Gadus morhua) – Conserved synteny between fish monolobal and tetrapod bilobal transferrin loci. BMC Genetics, 12(51), 14.

Antunes, A., Gharbi, K., Alexandrino, P., & Guyomard, R. (2006). Characterization of transferrin-linked microsatellites in brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Molecular ecology notes, 6(2), 547–549.

Baker, H. M., Anderson, B. F., & Baker, E. N. (2003). Dealing with iron: Common structural principles in proteins that transport iron and heme. Proceedings of the National Academy of Sciences, 100, 3579–3583.

Barnes, D., & Sato, G. (1980). Methods for growth of cultured cells in serum-free medium. Analytical Biochemistry, 102, 255–270.

Brunel, F., Ochoa, A., Schaeffer, E., Boissier, F., Guillou, Y., Cereghini, S., ... Zakin, M. M. (1988). Interactions of DNA-binding proteins with 5’ region of the human transferrin gene. The journal of biological chemistry, 263(21), 10180–10186.

Bullen, J. J., Rogers, H. J., Spalding, P. B., & Ward, C. G. (2006). Natural resistance, iron and infection: a challenge for clinical medicine. Journal of medical microbiology, 55, 251–258.

Ellis, A. E. (2001). Innate host defense mechanisms of fish against viruses and bacteria. Developmental and Comparative Immunology, 25, 827–839.

Faisst, S., & Meyer, S. (1992). Compilation of vertebrate-encoded transcription factors. Nucleic Acids Research, 20, 3–26.

Ford, M. J. (2001). Molecular evolution of transferrin: Evidence for positive selection in salmonids. Molecular biology and evolution, 18(4), 639–647.

Ford, M. J., Thornton, P. J., & Park, L. K. (1999). Natural selection promotes divergence of transferrin among salmonid species. Molecular Ecology, 8(6), 1055–1061.

Kvingedal, A. M. (1994). Characterization of the 5’ region of the Atlantic salmon (Salmo salar) transferrin-encoding gene. Gene, 150, 335–339.

Kvingedal, A. M., & RØrvik, K. A. (1993). Cloning and characterization of Atlantic salmon (Salmo salar) serum transferrin cDNA. Molecular marine biology and biotechnology, 2(4), 233–238.

Lamb, P., & McKnlght, S. L. (1991). Diversity and specificity in transcriptional regulation: The benefits of heterotypic dimerization. Trends in Biochemical Sciences, 16, 417–422.

Lambert, L. A., Perri, H., & Meehan, T. J. (2005). Evolution of duplications of the transferrin family of proteins. Comparative Biochemistry and Physiology, B, 140, 11–25.

Liang, G. M., & Jiang, X. P. (2010). Positive selection drives lactoferrin evolution in mammals. Genetica, 138, 757–762.

Lynch, M., & Conery, J. S. (2000). The evolutionary fate and consequences of duplicated genes. Science, 290(5494), 1151–5.

Mainou-Fowler, T., & Brock, J. H. (1985). Effect of iron deficiency on the response of mouse lymphocytes to concavalin A: The importance of transferrin-bound iron. Immunology, 54, 325–332.

MatInspector. (2013). MatInspector: Search for transcription factor binding sites. Genomatix. Pridobljeno s

Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure from human nucleated cells. Nucleic Acids Research, 16, 1215.

Ohno, S. (1970). Evolution by gene duplication. New York: Springer-Verlag.

Phillips, R. B., & Oakley, T. H. (1997). Phylogenetic relationships among the Salmoninae based on nuclear and mitochondrial DNA sequences. V T. D. Kocher & C. A. Stepien (ur.), Molecular systematics of fishes (str. 145–162), New York: Academic Press.

Real Time PCR Handbook. (2003). RRC Core Genomics Facility, University of Illinois at Chicago. Pridobljeno s

Rozman, T. (2008). Opis transferinskega lokusa in njegova uporaba pri filogenetskih analizah rodu Salmo (doktorska disertacija). Ljubljana: Medicinska fakulteta.

Rozman, T., Dovč, P., Marić, S., Kokalj-Vokač, N., Erjavec-Škerget, A., Rab, P., & Snoj, A. (2008). Evidence for two transferrin loci in the Salmo trutta genome. Animal genetics, 39, 577–585.

Sawaya, S. M., Lennon, D., Buschiazzo, E., & Gemmell, N. (2012). Promoter microsatellites as modulators of human gene expression. V A. J. Hannan (ur.), Tandem repeat polymorphism: Genetic plasticity, neutral diversity and disease. Austin, Texas: Landes Biosciences, Springer Science+Business Media.

Schaeffer, E., Guillou, F., Part, D., & Zakin, M. M. (1993). A different combination of transcription factors modulates the expression of the human transferrin promoter in liver and Sertoli cells. The Journal of Biological Chemistry, 268, 23399–23408.

Sun, Y., Zhu, Z., Wang, R., Sun, Y., & Xu, T. (2012). Miiuy croaker transferrin gene and evidence for positive selection events reveal different evolutionary patterns. Plos one, 7(9), 9.

Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

Wang, G., & Vasquez, K. M. (2007). Z-DNA, an active element in the genome. Frontiers in Bioscience, 12, 4424–4438.

Woo, P. T. K., & Ardelli, B. F. (2014). Immunity against selected piscine flagellates. Developmental and comparative immunology, 43, 268–279.

Zhang, J. (2003). Evolution by gene duplication: an update. Trends in ecology and evolution, 18, 292–298.


11. 12. 2018



Animal Science section

How to Cite

ČIBEJ, A., & SUŠNIK BAJEC, S. (2018). Transferrin gene expression in Salmo sp. Acta Agriculturae Slovenica, 112(1), 31–41.

Similar Articles

1-10 of 283

You may also start an advanced similarity search for this article.