Heat waves analysis and the heat load of agricultural workers during the heat waves in 2017 (using index WBGT)
DOI:
https://doi.org/10.14720/aas.2018.111.3.13Keywords:
heat wave, heat stress, WBGT index, agriculture, workers, SloveniaAbstract
Workers in agriculture are regularly exposed to heat stress during summer, which can affect reduced labour productivity and income losses. Air temperatures in Slovenia have been rising in recent decades, and climate change projections show that this trend will continue along with an increase in the number of days with heat stress risk. Changes in the number of heat waves in central and south-western Slovenia for the period 1961–2017 were analysed as well as the risk of the heat stress for workers during heat waves in the year 2017. The heat wave occurs if the temperature threshold for the average daily temperature is reached or exceeded on at least three consecutive days, with the threshold for the mild continental climate (Ljubljana) 24 °C and the mild Submediterranean climate (Bilje) 25 °C. The WBGT (Wet Bulb Globe Temperature) index, assessing the risk of heat stress, was calculated from relative humidity and air temperatures. At both locations, the number of days in heat waves increased as well as their intensity, average daily air temperatures were significantly higher than in the first half of the considered period. The time span, in which the heat waves occur, also extended, as until 1990 they did not appear in early June and late August, as in recent years. The calculated values of the WBGT show that for most days in the heat waves in 2017 in Ljubljana and Bilje, the WBGT 23 °C threshold was exceeded practically all day, which shows a high level of heat stress risk for physically intense work. In the case of exceeded WBGT reference values, employers or farmers themselves should take actions to reduce the risk of heat stress.References
ARSO. (2013). Podnebna spremenljivost Slovenije: Glavne značilnosti gibanja temperature zraka v obdobju 1961-2011. Dostopno na: http://meteo.arso.gov.si/uploads/probase/www/climate/text/sl/publications/PSS-Glavne-znacilnosti-gibanja-temperature-zraka-1961-2011.pdf
ARSO. (2017). Ocena podnebnih sprememb v Sloveniji do konca 21. stoletja: Povzetek temperaturnih in padavinskih povprečij. Dostopno na: http://meteo.arso.gov.si/uploads/probase/www/climate/text/sl/publications/povzetek-podnebnih-sprememb-temp-pad.pdf
Bernard, T. E., Pourmoghani, M. 1999. Prediction of Workplace Wet Bulb Global Temperature. Applied Occupational and Environmental Hygiene 14, 126-134. doi:10.1080/104732299303296 DOI: https://doi.org/10.1080/104732299303296
Bittner, M.I., Matthies, E.F., Dalbokova, D., Menne, B. (2013) Are European countries prepared for the next big heat-wave? European Journal of Public Health, 24(4), 615-619. doi:10.1093/eurpub/ckt121 DOI: https://doi.org/10.1093/eurpub/ckt121
Crowe, J., Wesseling, C., Roman Solano, B., Umana, M.P., Ramírez, A.R., Kjellstrom, T., Morales, D., Nilsson, M. (2013). Heat exposure in sugarcane harvesters in Costa Rica. American Journal of industrial Medicine, 56(10), 1157-1164. doi:10.1002/ajim.22204 DOI: https://doi.org/10.1002/ajim.22204
d’Ambrosio Alfano, F.R., Palella, B.I., Riccio, G., Malchaire, J. (2016). On the Effect of Thermophysical Properties of Clothing on the Heat Strain Predicted by PHS Model. The Annals of Occupational Hygiene, 60 (2), 231-251. doi:doi.org/10.1093/annhyg/mev070 DOI: https://doi.org/10.1093/annhyg/mev070
Flouris, A. D., McGinn, R., Poirier, M. P., Louie, J. C., Ioannou, L. G., Tsoutsoubi, L., Sigal, R. J., Boulay, P., Hardcastle, S. G., Kenny, G. P. (2018). Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31–70 years. Temperature, 5, 86-99. doi:10.1080/23328940.2017.1381800 DOI: https://doi.org/10.1080/23328940.2017.1381800
Gao, C., Kuklane, K., Östergren, P. O., Kjellstrom, T. (2018). Occupational heat stress assessment and protective strategies in the context of climate change. International Journal of Biometeorology, 62, 359-371. doi:10.1007/s00484-017-1352-y DOI: https://doi.org/10.1007/s00484-017-1352-y
Gubernot, D.M., Andersson, G.B., Hunting, K.L. (2015). Characterizing occupational heatrelated mortality in the United States, 2000-2010: An analysis using the census of fatal occupational injuries database. American Journal of Industrial Medicine, 58(2), 203-211. doi: 10.1002/ajim.22381 DOI: https://doi.org/10.1002/ajim.22381
Ioannou, L. G., Tsoutsoubi, L., Samoutis, G., Kajfez Bogataj, L., Kenny, G.P., Nybo, L., Kjellstrom, T., Flouris, A. D. (2017). Time-motion analysis as a novel approach for evaluating the impact of environmental heat exposure on labor loss in agriculture workers. Temperature, 4, 330-340. doi:10.1080/23328940.2017.1338210 DOI: https://doi.org/10.1080/23328940.2017.1338210
Kajfež Bogataj, L., Katkić, V., Pogačar, T. (2018). Vpliv podnebnih sprememb na povečano rabo energije za klimatizacijo. V: Lipič, K. (ur.), Rižnar, K. (ur.). Nacionalni program varstva okolja in njegov dialog z lokalnimi skupnostmi : strokovno posvetovanje 2018, Moravske Toplice, Hotel Ajda, 5. in 6. april 2018. Ljubljana: Zveza ekoloških gibanj Slovenije, str. 145-152.
Kjellstrom, T., Holmer, I., Lemke, B. (2009). Workplace heat stress, health and productivity - an increasing challenge for low and middle income countries during climate change. Global Health Action, 2(1), 2047. doi:10.3402/gha.v2i0.2047 DOI: https://doi.org/10.3402/gha.v2i0.2047
Kjellstrom, T., Freyberg, C., Lemke, B., Otto, M., Briggs, D. (2018). Estimating population heat exposure and impacts on working people in conjunction with climate change. International Journal of Biometeorology, 62(3), 291-306. doi:10.1007/s00484-017-1407-0 DOI: https://doi.org/10.1007/s00484-017-1407-0
Ključevšek, N., Hrabar, A., Dolinar, M. (2018). Podnebne podlage za definicijo vročinskega vala. Vetrnica, 10, 44-53.
Kuglitsch, F.G., Toreti, A., Xoplaki, E., Della-Marta, P.M., Zerefos, C.S., Türkeş, M., Luterbacher, J. (2010). Heat wave changes in the eastern Mediterranean since 1960. Geophysical Research Letters, 37. doi:10.1029/2009GL041841 DOI: https://doi.org/10.1029/2009GL041841
Lemke, B., Kjellstrom, T. (2012). Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. Industrial Health 50 (4), 267-278. doi:10.2486/indhealth.MS1352 DOI: https://doi.org/10.2486/indhealth.MS1352
McPherson, M. J. (2008). Subsurface Ventilation and Environmental Engineering, 2nd Ed., Ch. 17. Physiological reactions to climatic conditions. Mine Ventilation Services Inc., Clovis. Dostopno na: http://www.mvsengineering.com/index.php?cPath=25
Morabito, M., Crisci, A., Messeri, A., Messeri, G., Betti, G., Orlandini, S., Raschi, A., Maracchi, G. (2017). Increasing Heatwave Hazards in the Southeastern European Union Capitals. Atmosphere, 8(7), 115. doi:10.3390/atmos8070115 DOI: https://doi.org/10.3390/atmos8070115
Peng S., Piao S., Ciais P., Myneni R.B., Chen A., Chevallier F., Dolman A.J., Janssens I.A., Penuelas J., Zhang G., Vicca S., Wan S., Wang S., Zeng H. 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501: 88-92. DOI: https://doi.org/10.1038/nature12434
Pogačar, T., Črepinšek, Z., Kajfež Bogataj, L., Nybo, L. (2017). Comprehension of climatic and occupational heat stress amongst agricultural advisers and workers in Slovenia. Acta Agriculturae Slovenica, 109 (3), 545-554. doi:10.14720/aas.2017.109.3.06 DOI: https://doi.org/10.14720/aas.2017.109.3.06
Pogačar, T., Casanueva, A., Kozjek, K.,Ciuha, U., Mekjavić, I., Kajfež Bogataj, L., Črepinšek, Z. (2018). The effect of hot days on occupational heat stress in the manufacturing industry: implications for workers’ well-being and productivity. International Journal of Biometeorology. doi:10.1007/s00484-018-1530-6 DOI: https://doi.org/10.1007/s00484-018-1530-6
Russo, S., Sillman, J., Fischer, E.M. (2015). Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 10(12), 124003. doi:10.1088/1748-9326/10/12/124003 DOI: https://doi.org/10.1088/1748-9326/10/12/124003
Sahu, S., Sett, M., Kjellstrom, T. (2013). Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: implications for a climate change future. Industrial Health, 51(4), 424-431. doi: 10.2486/indhealth.2013-0006 DOI: https://doi.org/10.2486/indhealth.2013-0006
Staal Wästerlund, D. (2018). Managing heat in agricultural work: increasing worker safety and productivity by controlling heat exposure. Forestry Working Paper No. 1. Rome, FAO. 53 str.
Sušnik, A., Pogačar, T. 2011. Vremensko povzročeni stresi kmetijskih rastlin v letu 2011. Ujma, 25: 81-92.
Vertačnik, M. (2014) Ekstremne temperature in njihova spremenljivost v Sloveniji v obdobju 1961-2013. Diplomska naloga. Ljubljana, Biotehniška fakulteta, oddelek za agronomijo: 36 str.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Tjaša Pogačar, Lučka Kajfež Bogataj, Zalika Črepinšek

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.