Waterlogging effects on some antioxidant enzymes activities and yield of three wheat promising lines

Authors

  • Fereshteh ALIZADEH-VASKASI Department of Biology, Basic Science Campus, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Hemmatollah PIRDASHTI Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari agricultural science and natural resources university, Sari, Iran
  • Ali CHERATI ARAEI Agricultural and Natural Resources Research Center of Mazandaran, Iran
  • Sara SAADATMAND Department of Biology, Basic Science Campus, Science and Research Branch, Islamic Azad University, Tehran, Iran

DOI:

https://doi.org/10.14720/aas.2018.111.3.10

Keywords:

waterlogging stress, antioxidant enzymes, wheat, proline, yield, yield components

Abstract

Waterlogging is one of the most important environmental stresses that have negative effects on wheat growth and yield. The purpose of this study was to investigate the effect of waterlogging (0, 7, 14 and 21 d) at tillering (ZG21) and stem elongation (ZG31) stages on the content of photosynthetic pigments, proline, malondialdehyde (MDA), antioxidant enzymes, grain yield and yield components of three wheat promising lines (N-93-19, N-93-9 and N-92-9). Increasing waterlogging stress reduce the photosynthetic pigments contents and the activity of catalase enzyme while increase the proline content, MDA, superoxide dismutase and peroxidase enzymes in three wheat genotypes in both tillering and stem elongation stages. Waterlogging also reduced yield and yield components in three wheat genotypes. The results showed that N-92-9 genotype had better response than other two genotypes in all studied traits under waterlogging conditions.

References

Amador, M.L., Sancho, S., Bielsa, B., Gomez-Aparisi, J., Rubio-Cabetas, M.J. (2012). Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage. Physiologia Plantarum, 144, 357–368. doi:10.1111/j.1399-3054.2012.01568.x

Arbona, V., Hossain, Z., Lo´pez-Climent, M.F., Pe´rez-Clemente, R.M., Go´mez-Cadenas, A. (2008). Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum, 132, 452–466. doi:10.1111/j.1399-3054.2007.01029.x

Barret-Lennard, E.G. (2003). The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant and Soil, 253, 35-54. doi:10.1023/A:1024574622669

Bates, L., Waldren, R.P., Teatre, J.D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. doi:10.1007/BF00018060

Biemelt, S., Keetman, U., Mock, H.P., Grimm, B. (2000). Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant, Cell & Environment, 23, 135-144. doi:10.1046/j.1365-3040.2000.00542.x

Blokhina, O.B., Fagerstedt, K.V., Chirkova, T.V. (1999). Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration. Physiologia Plantarum, 105, 625-632. doi:10.1034/j.1399-3054.1999.105405.x

Ceylan, A. (Ed) (1994). Field Crop Production. Aegean University Press, Izmir, pp. 520.

Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168, 241–248. doi:10.1016/j.plantsci.2004.07.039

Collaku, A., Harrison, S.A. (2002). Losses in wheat due to waterlogging. Crop Science, 42, 444-450. doi:10.2135/cropsci2002.4440

Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., Grover, A., Ismond, K.P., Good, A.G., Peacock, W.J. (2000). Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany, 342, 89–97. doi:10.1093/jexbot/51.342.89

Edreva, A. (2005). Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agriculture, Ecosystems & Environment, 106, 119–133. doi:10.1016/j.agee.2004.10.022

Fukao, T., Bailey-Serres, J. (2004). Plant responses to hypoxia – is survival a balancing act? Trends in Plant Science, 9, 449–456. doi:10.1016/j.tplants.2004.07.005

Gardner, W.K., Flood, R.G. (1993). Less waterlogging damage with long season wheats. Cereal Research Communications, 21, 337-343.

Gerami, M., Ghorbani, A., Karimi, S. (2018). Role of salicylic acid pretreatment in alleviating cadmium-induced toxicity in Salvia officinalis L. Iranian Journal of Plant Biology, 10(1), 81-95.

Ghorbani, A., Razavi, S.M., Ghasemi Omran, V.O., Pirdashti, H. (2018). Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biology, 20(4), 729-736. doi:10.1111/plb.12717

Gossett, D.R., Millhollon, E.P., Lucas, M.C. (1994). Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34, 706–714. doi:10.2135/cropsci1994.0011183X003400030020x

Herzog, M., Striker, G.G., Colmer, T.D., Pedersen, O. (2016). Mechanisms of waterlogging tolerance in wheat--a review of root and shoot physiology. Plant, Cell & Environment, 39(5), 1068-86. doi:10.1111/pce.12676

Kumutha, D., Ezhilmathi, K., Sairam, R.K., Srivastava, G.C., Deshmukh, P.S., Meena, R.C. (2009). Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Physiologia Plantarum, 53(1), 75-84. doi:10.1007/s10535-009-0011-5

Lichtenthaler, H., Wellburm, A.R. (1983). Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603, 591–593. doi:10.1042/bst0110591

Liu, F., Van Toai, T., Moy, L.P., Bock, G., Linford, L.D., Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiology, 137, 1115–1129. doi:10.1104/pp.104.055475

Heath, R.L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi:10.1016/0003-9861(68)90654-1

Luck, H. 1971. Catalase. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis. New York: Academic Press. pp. 885–894.

Maehly, A.C., Chance, B. (1954). The assay of catalases and peroxidases. Methods of Biochemical Analysis, 1, 357–424. doi:10.1002/9780470110171.ch14

Meloni, D.A., Oliva, M.O., Martinez, C.A., Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49, 69–76. doi:10.1016/S0098-8472(02)00058-8

Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498. doi:10.1016/j.tplants.2004.08.009

Olgun, M., Kumlay, A.M., Adiguzel, M.C., Caglar, A. (2008). The effect of waterlogging in wheat (T.aestivum L.). Acta Agriculturae Scandinavica Section B- Soil and Plant Science, 58(3), 193-198.

Pang, J., Zhou, M., Mendham, N., Shabala, S. (2004). Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Australian Journal of Agricultural Research, 55, 895-906. doi:10.1071/AR03097

Saqib, M., Akhtar, J., Qureshi, R.H. (2004). Pot study on wheat growth in saline and waterlogged compacted soil. Soil & Tillage Research, 77, 169-177. doi:10.1016/j.still.2003.12.004

Sayre, K.D., Van Ginkel, M., Rajaram, S., Ortiz-Monasterio, I. (1994). Tolerance to waterlogging losses in spring bread wheat: effect of time of onset on expression. Annual Wheat Newsletter, 40, 165–171.

Setter, T.L., Burgess, P., Waters, I., Kuo, J. (2001). Genetic diversity of barley and wheat for waterlogging tolerance in Western Australia. In: Proceedings of the 10th Australian Barley Technical Symposium, Canberra, 16-20 September 2001, ACT, Australia.

Smethurst, C.F., Shabala, S. (2003). Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Functional Plant Biology, 30, 335-343. doi:10.1071/FP02192

Suzuki, N., Mittler, R. (2006). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum, 126, 45–51. doi:10.1111/j.0031-9317.2005.00582.x

Ushimaru, T., Maki, Y., Sano, S., Koshiba, K., Asada, K., Tsuji, H. (1997). Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely ascorbate peroxidase, mono dehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water. Plant and Cell Physiology, 38, 541-549. doi:10.1093/oxfordjournals.pcp.a029203

Van Toai, T.T., Bolles, C.S. (1991). Postanoxic injury in soybean (Glycine max) seedlings. Plant Physiology, 97, 588-592. doi:10.1104/pp.97.2.588

Videmšek, U., Turk, B., Vodnik, D. (2006). Root aerenchyma–formation and function. Acta Agriculturae Slovenica, 87, 445-453.

Downloads

Published

12. 12. 2018

Issue

Section

Agronomy section

How to Cite

ALIZADEH-VASKASI, F., PIRDASHTI, H., CHERATI ARAEI, A., & SAADATMAND, S. (2018). Waterlogging effects on some antioxidant enzymes activities and yield of three wheat promising lines. Acta Agriculturae Slovenica, 111(3), 621–631. https://doi.org/10.14720/aas.2018.111.3.10

Similar Articles

1-10 of 521

You may also start an advanced similarity search for this article.