Impact of temperature stress on secondary metabolite profile and phytotoxicity of Amaranthus cruentus L. leaf extracts

Authors

  • Maria Elizabeth CAWOOD University of the Free State Bloemfontein South Africa
  • Ingrid ALLEMANN Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
  • James ALLEMANN Department of Soil, Crop and Climate Sciences, University of the Free State, Bloemfontein, South Africa

DOI:

https://doi.org/10.14720/aas.2018.111.3.09

Keywords:

Amaranthus cruentus, temperature, stress, phytotoxcitiy, metabolites, phenolic compounds

Abstract

In this study Amaranthus cruentus plants were grown under controlled optimal conditions (28/21 °C) for three months and then subjected to cold (14/7 °C) and hot (33/40 °C) temperatures. We investigated the influence of these temperature regimes on the metabolite profile of the leaves through analyses of data by TLC, HPLC and GC-MS spectrometry. The phytotoxic potential of a methanol-water (MW) and dichloromethane (DCM) extract from the aerial parts were examined through in vitro screening of germination and growth of lettuce and pepper. The optimal extracts displayed the highest diversity of secondary metabolites, and the highest total phenolics and flavonoids content. Through TLC and HPLC analysis the significantly lower phenolic content in the hot temperature treated samples was confirmed. A wide range of metabolites were detected in the DCM extracts through GC-MS analyses. The phytotoxicity of both the MW and DCM extracts were demonstrated, as germination and growth of pepper and lettuce were significantly inhibited, indicating the presence of more than one allelochemical compound which may affect the allelopathic activity of A. cruentus during changes in environmental temperatures.

Author Biography

  • Maria Elizabeth CAWOOD, University of the Free State Bloemfontein South Africa

    Department of Plant Sciences

    Lecturer

References

Allemann, I., Cawood, M.E., Allemann, J. (2017). Influence of altered temperatures on allelopatic properties of Amaranthus cruentus L. Acta agriculturae Slovenica, 109(2), 465-471. doi:10.14720/aas.2017.109.2.29

Alemayehu, F.R., Bendevis, M.A., Jacobsen, S.E. (2015). The potential for utilizing the seed crop Amaranth (Amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. Journal of Agronomy and Crop Science, 201, 321–329. doi:10.1111/jac.12108

Amini, R., An, M., Pratley, J., Azimi, S. (2009). Allelopathic assessment of annual ryegrass (Lolium rigidum): Bioassays. Allelopathy Journal, 24(1), 67-79.

Amini, R., Movahedpour, F., Ghassemi-Golezani, K., Mohammadi-Nasab, A.D., Zafarani-Moattar, P. (2012). Allelopathic assessment of common amaranth by ECAM. International Research Journal of Applied & Basic Sciences, 3(11), 2268-2272.

Bais, H.P., Kaushik, S. (2010). Catechin secretion & phytotoxicity. Communicative & integrative Biology, 3(5), 468-470. doi:10.4161/cib.3.5.12559

Basile, A., Sorbo, S., Giordano, S., Ricciardi, L., Ferrara, S., Montesano, D., Cobianchi, R.C., Vuotto, M.L., Ferrara, L. (2000). Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia 7, Suppl., S110-S116. doi:10.1016/S0367-326X(00)00185-4

Bertin, C., Yang, X., Weston, L.A. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256, 67-83. doi:10.1023/A:1026290508166

Bishop, G.J., Yokota, T. (2001). Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant and Cell Physiology, 42(2), 114-120. doi:10.1093/pcp/pce018

Cai, Y., Sun, M., Corke, H. (1998). Colorant properties and stability of Amaranthus betacyanin pigments. Journal of Agricultural and Food Chemistry, 46(11), 4491-4495. doi:10.1021/jf980457g

Chobot, V., Huber, C., Trettenhahn, G., Hadacek, F. (2009). (±)-Catechin: Chemical weapon, antioxidant, or stress regulator? Journal of Chemical Ecology, 35(8), 980–996. doi:10.1007/s10886-009-9681-x

Connick, W.J., Bradow, J.M., Legendre, M.G. (1989). Identification and bioactivity of volatile allelochemicals from Amaranth residues. Journal of Agricultural and Food Chemistry, 37, 792-796. doi:10.1021/jf00087a049

Dhole, J.A., Lone, K.D., Dhole, G.A., Bodke, S.S. (2013). Allelopathic effect of aqueous and ethanolic extracts of some common weeds on seed health of Triticum aestivum L. (Wheat). International Journal of Current Microbiology and Applied Sciences, 2(6), 254-260.

Ding, J., Sun, Y., Xiao, C.L., Shi, K., Zhou, Y.H., Yu, J.Q. (2007). Physiological basis of different allelopathic reactions of cucumber and fig leaf gourd plants to cinnamic acid. Journal of Experimental Botany, 58(13), 3765-3773. doi:10.1093/jxb/erm227

Einhellig, F.A., Eckrich, P.C. (1984). Interactions of temperature and ferulic acid stress on grain sorghum and soybeans. Journal of Chemical Ecology, 10, 161-170. doi:10.1007/BF00987653

Einhellig, F.A. (1987). Interactions among allelochemicals and other stress factors of the plant environment. ACS Symposium Series, 330, 343–357. doi:10.1021/bk-1987-0330.ch032

Einhellig, F.A. (1996). Interactions involving allelopathy in cropping system. Agronomy Journal, 88, 886–893. doi:10.2134/agronj1996.00021962003600060007x

Fujii, Y., Parvez, S.S., Parvez, M.M., Ohmae, Y., Iida, O. (2003). Screening of 239 medical plant species for allelopathic activity using the sandwich method. Weed Biology and Management, 3, 233-241. doi:10.1046/j.1444-6162.2003.00111.x

Gamel, T.H., Mesallam, A.S., Damir, A.A, Shekib, L.A, Linssen, J.P. (2007). Characterization of Amaranth seed oils. Journal of Food Lipids, 14, 323-334. doi:10.1111/j.1745-4522.2007.00089.x

Gershenzon, J. (1984). Changes in the levels of plant secondary metabolites under water and nutrient stress. Recent Advances in

Phytochemistry, 18, 273-320. doi:10.1007/978-1-4684-1206-2_10

Ghafarbi, S.P., Hassannejad, S., Lotfi, R. (2012). Allelopathic effects of wheat seed extracts on seed and seedling growth of eight selected weed species. International Journal of Agricultural Research, 4(19), 1452-1457.

Gobbo-Neto, L., Lopes, N.P. (2007). Medicinal plants: factors of influence on the content of secondary metabolites. Quimica Nova, 30(2), 374-381. doi:10.1590/S0100-40422007000200026

Gouvea, D.R., Meloni, F., Ribeiro, A.B.B., Lopes, J.L.C., Lopes, N.P. (2012). A new HPLC-DAD-MS/MS method for the simultaneous determination of major compounds in the crude extract of Lychnophora salicifolia Mart. (Brazilian arnicᾶo) leaves: Application of chemical variability evaluation. Analytica Chimica Acta, 748, 28-36. doi:10.1016/j.aca.2012.08.027

Hill, E.C., Ngouajio, M., Nair, M.G. (2007). Allelopathic potential of hairt vetch (Vicia villosa) and cowpea (Vigna unguiculata) methanol and ethyl acetate extracts on weeds and vegetables. Weed Technology, 21, 437-444. doi:10.1614/WT-06-167.1

Inderjit, A.U., Dakshini, K.M.M. (1995). On laboratory bioassays in allelopathy. The Botanical Review, 61, 28-44. doi:10.1007/BF02897150

Kobayashi, K. (2004). Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biology and Management, 4, 1–7. doi:10.1111/j.1445-6664.2003.00112.x

Koeppe, P.E., Rohrbaugh, L.M., Wender, S.H. (1969). The effect of varying UV intensities on the concentration of scopolin and caffeoylquinic acids in tobacco and sunflower. Phytochemistry, 8, 889-896. doi:10.1016/S0031-9422(00)85879-3

Konstantinović, B., Blagojević, M., Konstantinivić, B., Samardžić, N. (2014). Allelopathic effect of weed species Amaranthus retroflexus L. on maize seed germination. Romanian Agricultural Research, 31, 315-321.

Kraujalis, P., Venskutonis, P.R., Kraujaliene, V., Pukalskas, A. (2013). Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of Amaranth. Plant Foods for Human Nutrition, 68, 322–328. doi:10.1007/s11130-013-0375-8

Krόl, A., Amarowicz, R., Weidner, S. (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiologiae Plantarum, 36, 1491–1499. doi:10.1007/s11738-014-1526-8

Kulbat, K. (2016). The role of phenolic compounds in plant resistance. Biotechnology and Food Sciences, 80(2), 97-108.

Li, J., Ou-Lee, T.M., Raba, R., Amundsom, R.G., Last, R.L. (1993). Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. The Plant Cell, 5(2), 171-179. doi:10.1105/tpc.5.2.171

Li, Z-H., Wang, O., Xiao, R., Cun, D.P., Jiang, D-A. (2010). Phenolics and plant allelopathy. Molecules, 15, 8933-8952. doi:10.3390/molecules15128933

Maiyo, Z.C., Ngure, R.M., Matasyoh, J.C., Chepkorir, R. (2010). Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. African Journal of. Biotechnology, 9(21), 3178-3182.

Mensah, J.K., Okoli, R.I., Ohaju-Obodo, J.O., Eifediyi, K. (2008). Phytochemical, nutritional and medical properties of some leafy vegetables consumed by Edo people of Nigeria. African Journal of. Biotechnology, 7(14), 2304-2309.

Miller, A.L. (1996). Antioxidant flavonoids: structure, function and clinical usage. Alternative Medicine Review, 1(2), 103-111.

Minorsky, V. (2002). Allelopathy and grain crop production. Plant Physiology, 130, 1745-1746. doi:10.1104/pp.900057

Morrison, J.I.L., Lawlor, D.W. (1999). Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell & Environment, 22, 659-82. doi:10.1046/j.1365-3040.1999.00443.x

Mroczek, A. (2015). Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry Reviews, 14, 577-605. doi:10.1007/s11101-015-9394-4

Nana, F.W., Hilou, A., Millogo, J.F., Nacoulma, O.G. (2012). Phytochemical composition, antioxidant and xanthine oxidase inhibitory activities of Amaranthus cruentus L. and Amaranthus hybridus L. extracts. Pharmaceuticals, 5(6), 613-628. doi:10.3390/ph5060613

Obaid, K.A., Qasem, J.R. (2005). Allelopathic activity of common weed species on vegetable crops grown in Jordan. Allelopathy Journal, 15(2), 221-236.

Oboh, G., Raddatz, H., Henle, T. (2008). Antioxidant properties of polar and non-polar extracts of some tropical green leafy vegetables. Journal of the Science of Food and Agriculture, 88, 2486–2492. doi:10.1002/jsfa.3367

Qasem, J.R. (1995). The allelopathic effect of three Amaranthus spp. (pigweeds) on wheat (Triticum durum). Weed Research, 35(1), 41-49. doi:10.1111/j.1365-3180.1995.tb02015.x

Pifrung, M.C. (2006). The Synthetic Chemists Companion. Wiley. Online Library. http//www.onlinelibrary.wiley.com/book/10.1002/9780470141045 (15/09/2013).

Ramakrishna, A., Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720-1731. doi:10.4161/psb.6.11.17613

Rhoads, D.M., Umbach, A.L., Subbaiah, C.C., Siedow, J.N. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiology, 141, 357–366. doi:10.1104/pp.106.079129

Rice, E.L. (1984). Allelopathy. 2nd ed. Orlando, Florida, USA: Academic Press; p. 67-68.

Rudikovskaya, E.G., Fedorova, G.A., Dudareva, L.V., Makarova, L.E., Rudikovskii, A.V. (2008). Effect of growth temperature on the composition of phenols in pea roots. Russian Journal of Plant Physiology, 55(5), 712-715. doi:10.1134/S1021443708050178

Shah, A.H.A. (2005). Spinoside, new coumaroyl flavone glycoside from Amaranthus spinosus. Archives of Pharmacal Research, 27(12), 1216-1219.

Singleton, V.L., Rossi, Jr J.A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. ‎ American Journal of Enology and Viticulture, 16, 144-158.

Souza Filho, A.P.S., Alves, S.M. (2002). Allelopathy: Basic principles and general aspects. EMBRAPA Amazônia Oriental: Belém, Brazil, p. 206.

Steel, R.G.D., Torrie, J.H. (1980). Principles and procedures of statistics, 2nd ed. New York: McGraw-Hill; p. 633.

Steffensen, S.K., Rinnan, Å., Mortensen, A.G., Laursen, B., de Troiani, R.M., Noellemeyer, E.J., Janovska, D., Dusek, K., Délano-Frier, J., Taberner, A., et al. (2011). Variations in the polyphenol content of seeds of field grown Amaranthus genotypes. Food Chemistry, 129, 131–138. doi:10.1016/j.foodchem.2011.04.044

Stintzing, F.C., Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology, 15, 19-38. doi:10.1016/j.tifs.2003.07.004

Szakiel, A., Paczkowski, C., Henry, M. (2010). Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews, 10, 471-491. doi:10.1007/s11101-010-9177-x

Tang, C-H., Cai, W-F., Kohl, K., Nishimote, R.K. (1995). Plant stress and allelopathy. In: Inderjit AU, Dakshini KMM, Einhellig FA, editors. Allelopathy, Organisms, Processes and Applications. American Chemical Society: Washington, DC; p. 142–157.

Trezzi, M.M., Vidal, R.A., Balbinot, Junior A.A., Bittencourt, H.H., da Silva Souza Filho, A.P. (2016). Allelopathy: driving mechanisms governing its activity in agriculture. Journal of Plant Interactions, 11(1), 53-60. doi:10.1080/17429145.2016.1159342

Vidović, M., Morina, F., Milić, S., Jovanović, S.V. (2015). An improved HPLC-DAD method for simultaneously measuring phenolics in the leaves of Tilia platyphyllos and Ailanthus altissima. Botanica Serbica, 39(2), 177-186.

Vincken, J.P., Heng, L., De Groot, A., Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68, 275–97. doi:10.1016/j.phytochem.2006.10.008

Wagner, H., Bladt, S. (1996). Plant Drug Analysis: A thin layer chromatography atlas. 2nd ed. Springer-Verlag Berlin Heidelberg, Germany; p. 384. doi:10.1007/978-3-642-00574-9

Waller, G.R. (1987). Allelochemicals: role in agriculture and forestry. ACS Symposium Series, 330, American Chemical Society, Washington, D. C. doi:10.1021/bk-1987-0330

Wang, W., Vinocur, B., Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1-14. doi:10.1007/s00425-003-1105-5

Wender, S.H. (1970). Effects of some environmental stress factors on certain phenolic compounds in tobacco. Recent Advances in Phytochemistry, 3, 1-29.

Weston, L.A. (2005). History and current trends in the use of allelopathy for weed management. Hort Technology, 15(3), 529-534.

Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559. doi:10.1016/S0308-8146(98)00102-2

Downloads

Published

12. 12. 2018

Issue

Section

Agronomy section

How to Cite

CAWOOD, M. E., ALLEMANN, I., & ALLEMANN, J. (2018). Impact of temperature stress on secondary metabolite profile and phytotoxicity of Amaranthus cruentus L. leaf extracts. Acta Agriculturae Slovenica, 111(3), 609–620. https://doi.org/10.14720/aas.2018.111.3.09

Similar Articles

1-10 of 330

You may also start an advanced similarity search for this article.