Salicylic acid and jasmonic acid alter physiological performance, assimilate mobilization and seed filling of soybean under salt stress

Authors

  • Kazem GHASSEMI-GOLEZANI Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
  • Salar FARHANGI-ABRIZ Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
  • Ali BANDEHAGH Department of Plant Breading and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

DOI:

https://doi.org/10.14720/aas.2018.111.3.08

Keywords:

chlorophyll content, jasmonic acid, salicylic acid, salinity, seed production, soybean

Abstract

This research was conducted to investigate the morpho-physiological effects of salicylic acid and jasmonic acid on soybean performance and productivity under salinity. Leaf chlorophyll content index, carotenoids and anthocyanins content, photosystem II efficiency, relative water content, leaf area, leaf mass, specific leaf area, water use efficiency, seed filling duration, assimilate mobilization efficiency and seed mass decreased, but leaf temperature, specific leaf mass and electrolytic leakage of leaves increased with enhancing salinity. Salicylic acid improved leaf chlorophyll content index, anthocyanins content, leaf area, specific leaf area, water use efficiency, seed filing duration, assimilate mobilization efficiency and seed mass under both saline and non-saline conditions. The superior effects of salicylic acid on some traits such as maximum quantum yield of PSII, relative water content and leaf electrolytic leakage only occurred under different salinity levels. Jasmonic acid improved leaf mass, specific leaf mass, carotenoids content, relative water content, seed filling rate and reduced chlorophyll content index, leaf temperature, leaf area, specific leaf area, seed filling duration, assimilates mobilization efficiency and relative electrolytic leakage of soybean, with no significant effects on photosystem II efficiency and seed mass. Application of salicylic acid was, therefore, the superior treatment for enhancing physiological performance and seed mass of soybean plants under different salinity levels.

References

Aftab, T., Khan, M. M. A., Idrees, M., Naeem, M., Hashmi, N. (2011). Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma, 248, 601-612. doi:10.1007/s00709-010-0218-5

Barrs, H.D., Weatherley, P.E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15, 413-428. doi:10.1071/BI9620413

Cao, W.H., Liu, J., He, X.J., Mu, R.L., Zhou, H.L., Chen, S.Y., Zhang, J.S. (2007). Modulation of ethylene responses affects plant salt-stress responses. Plant physiology, 143, 707-719. DOI: doi:10.1104/pp.106.094292

Choudhury, S., Panda, S.K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarian Journal of Plant Physiology, 30, 95-110.

Creelman, R.A., Mullet, J.E. (1995). Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of Sciences, 92, 4114-4119. doi:10.1073/pnas.92.10.4114

Farhangi-Abriz, S., Ghassemi-Golezani, K. (2016). Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. Journal of Applied Botany and Food Quality, 89, 243-248.

Farhangi-Abriz, S., Ghassemi-Golezani, K. (2018). How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicology and Environmental Safety, 147, 1010-1016. doi:10.1016/j.ecoenv.2017.09.070

Farhangi-Abriz, S., Torabian, S. (2017). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and environmental safety, 137, 64-70. doi:10.1016/j.ecoenv.2016.11.029

Ghassemi-Golezani, K., Farhangi-Abriz, S. (2018a). Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicology and environmental safety, 166, 18-25. doi:10.1016/j.ecoenv.2018.09.059

Ghassemi-Golezani, K., Farhangi-Abriz, S. (2018b). Changes in Oil Accumulation and Fatty Acid Composition of Soybean Seeds under Salt Stress in Response to Salicylic Acid and Jasmonic Acid. Russian Journal of Plant Physiology, 65, 229-236. doi:10.1134/S1021443718020115

Ghassemi-Golezani, K., Lotfi, R. (2015). The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russian journal of plant physiology, 62, 611-616. doi:10.1134/S1021443715040081

Ghassemi-Golezani, K., Taifeh-Noori, M., Oustan, S., Moghaddam, M., Seyyed-Rahmani, S. (2010). Oil and protein accumulation in soybean grains under salinity stress. Notulae Scientia Biologicae, 2, 64-69. doi:10.15835/nsb224590

Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G., Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728-736. doi:10.1016/j.jplph.2005.12.009

Hayat, S., Ali, B., Ahmad, A. (2007). Salicylic acid: biosynthesis, metabolism and physiological role in plants. In Salicylic acid: A plant hormone. Springer, Dordrecht. doi:10.1007/1-4020-5184-0

Jiang, H., Egli, D.B. (1993). Shade induced changes in flower and pod number and flower and fruit abscission in soybean. Agronomy Journal, 85, 221-225. doi:10.2134/agronj1993.00021962008500020011x

Leslie, C. A., Romani, R. J. (1986). Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Reports, 5, 144-146. doi:10.1007/BF00269255

Luo, Q., Yu, B., Liu, Y. (2005). Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of plant physiology, 162, 1003-1012. doi:10.1016/j.jplph.2004.11.008

Lutts, S., Kinet, J. M., Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of botany, 78, 389-398. doi:10.1006/anbo.1996.0134

Maclachlan, S., Zalik, S. (1963). Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Canadian Journal of Botany, 41, 1053-1062. doi:10.1139/b63-088

Mancinelli, A.L. (1984). Photoregulation of anthocyanin synthesis: VIII. Effect of light pretreatments. Plant Physiology, 75, 447-453. doi:10.1104/pp.75.2.447

Mirfattahi, Z., Karimi, S., Roozban, M.R. (2017). Salinity induced changes in water relations, oxidative damage and morpho-physiological adaptations of pistachio genotypes in soilless culture. Acta agriculturae Slovenica, 109, 291-302. doi:10.14720/aas.2017.109.2.12

Mohammadian, R., Moghaddam, M., Rahimian, H. Sadeghian, S.Y. (2005). Effect of early season drought stress on growth characteristics of sugar beet genotypes. Turkish journal of agriculture and forestry, 29, 357-368.

Nazar, R., Umar, S., Khan, N.A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant signaling & behavior, 10. doi:10.1080/15592324.2014.1003751

Noreen, S., Ashraf, M., Hussain, M., Jamil, A. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany, 41, 473-479.

Oya, T., Nepomuceno, A. L., Neumaier, N., Farias, J. R. B., Tobita, S., Ito, O. (2004). Drought tolerance characteristics of Brazilian soybean cultivars. Plant Production Science, 7, 129-137. doi:10.1626/pps.7.129

Reddy, M.P., Vora, A.B. (1986). Salinity induced changes in pigment composition and chlorophyllase activity of wheat. Indian Journal of plant physiology, 29, 331-334.

Sali, A.L.I.U., Rusinovci, I., Fetahu, S., Gashi, B., Simeonovska, E., Rozman, L. (2015). The effect of salt stress on the germination of maize (Zea mays L.) seeds and photosynthetic pigments. Acta agriculturae Slovenica, 105, 85-94. doi:10.14720/aas.2015.105.1.09

Shi, Q., Bao, Z., Zhu, Z., Ying, Q., Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant growth regulation, 48, 127-135. doi:10.1007/s10725-005-5482-6

Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of botany, 100, 681-697. doi:10.1093/aob/mcm079

Yang, D.L., Yang, Y., He, Z. (2013). Roles of plant hormones and their interplay in rice immunity. Molecular plant, 6, 675-685. doi:10.1093/mp/sst056

Downloads

Published

12. 12. 2018

Issue

Section

Agronomy section

How to Cite

GHASSEMI-GOLEZANI, K., FARHANGI-ABRIZ, S., & BANDEHAGH, A. (2018). Salicylic acid and jasmonic acid alter physiological performance, assimilate mobilization and seed filling of soybean under salt stress. Acta Agriculturae Slovenica, 111(3), 597–607. https://doi.org/10.14720/aas.2018.111.3.08