Responses of young cucumber plants to a diurnal temperature drop at different times of day and night

Authors

  • Tatjana G. SHIBAEVA Institute of Biology, Karelian Research Center, Russian Academy of Science, Russia
  • Elena G. SHERUDILO Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Russia
  • Elena N. IKKONEN Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Russia
  • Alexander F. TITOV Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Russia

DOI:

https://doi.org/10.14720/aas.2018.111.3.05

Keywords:

Cucumis sativus L., growth, daily rhythms

Abstract

In greenhouse production of a number of vegetable and ornamental plant species, a short diurnal temperature drop in the end of the night or in the morning is commonly used to reduce stem elongation as an alternative to chemical growth retardants. Experiments were carried out to quantify the effects of a temperature drop at different times of the day and night on growth and photosynthetic activity of young cucumber plants. During 6 days plants were exposed daily to a temperature of 10 °C for 2 h at the beginning, in the middle and at the end of the night and day periods. The results have shown that plant response to drop may be qualitatively different in the light and darkness. While strongest effects of drop are observed when it is given in the daytime, for practical application in greenhouses it is more appropriate to reduce temperature at night. However, it may not be strictly necessary for cucumber seedlings to apply drop at the end of the night as it was stated in the literature. Thus, our results may cast doubt on the following statements: (a) temperature drops are not effective when delivered at other times of the day or night (except before sunrise), (b) optimal time for drop effects depends on the daily dynamics of stem and petiole elongation rate. It is rather drop itself is capable of modifying the dynamics of plant growth in the daily cycle.

Author Biographies

  • Tatjana G. SHIBAEVA, Institute of Biology, Karelian Research Center, Russian Academy of Science, Russia
    Lab Ecological Plant Physiology, PhD, seniour researcher
  • Elena G. SHERUDILO, Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Russia
    Lab Ecological Plant Physiology, PhD, seniour researcher
  • Elena N. IKKONEN, Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Russia
    Lab Ecological Plant Physiology, PhD, seniour researcher
  • Alexander F. TITOV, Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Russia
    Lab Ecological Plant Physiology, Corresponding Member of RAS, Professor

References

Bakken A.K. & Moe, R. (1995). Height and quality control in Christmas begonia by growth-retarding temperature regimes. Acta Agriculturae Scandinavica, Section B  Soil and Plant Science, 45, 283-291.

Berghage, R. (1998). Controlling height with temperature. HortTechnology, 8(4).

Bertram, L. & Karlsen, P. (1994) Patterns in stem elongation rate in chrysanthemum and tomato plants in relation to irradiance and day/night temperature. Scientia Horticulturae, 58, 139-150. doi:10.1016/0304-4238(94)90134-1

Cuijpers, L.H.M. & Vogelezang, J.V.M. (1992). DIF and temperature drop for short-day pot plants. Acta Horticulturae, 327, 25-32. doi:10.17660/ActaHortic.1992.327.3

Erwin, J.E., Heins, R.D. (1988). Effect of diurnal temperature fluctuations on stem elongation circadian rhythms. HortScience, 23, 164.

Erwin, J.E. & Heins, R.D. (1995). Thermomorphogenic responses in stem and leaf development. HortScience, 30, 940-949.

Gertsson, U. (1992). Influence of temperature on shoot elongation in young tomato plants. Acta Horticulturae, 327, 71-76. doi:10.17660/ActaHortic.1992.327.8

Grimstad, S.O. (1995). Low-temperature pulse affects growth and development of young cucumber and tomato plants. Journal of Horticultural Science, 70, 75-80. doi:10.1080/14620316.1995.11515275

Grindal, G. & Moe, R. (1994). Effects of temperature-drop and a short dark interruption on stem elongation and flowering in Begonia x hiemalis Fotsch. Sci Hortic, 57, 123-132. doi:10.1016/0304-4238(94)90040-X

Grindal, G. & Moe, R. (1995). Growth rhythm and temperature DROP. Acta Horticulturae, 378, 47-52. doi:10.17660/ActaHortic.1995.378.6

Graamans, L., Baeza, E., Dobbelsteen, A.D., Tsafaras, I., & Stanghellini, C. (2018). Plant factories versus greenhouses: Comparison of resource use efficiency. Agricultural Systems, 160, 31-43. doi:10.1016/j.agsy.2017.11.003

Gururani, M.A., Venkatesh, J & Tran L.-S.P (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8, 1304-1320. doi:10.1016/j.molp.2015.05.005

Hetherington, S.E., He, J. & Smillie, R.M. (1989). Photoinhibition at low temperature in chilling-sensitive and -resistant plants. Plant Physiology, 90, 1609-1615. doi:10.1104/pp.90.4.1609

Ikkonen, E.N., Shibaeva, T.G., Sherudilo, E.G. & Titov, A.F. (2016). Effect of a temperature drop on the apparent quantum yield of photosynthesis in cucumber plants. Transactions of Karelian Research Centre of the Russian Academy of Sciences. Experimental Biology Series, 6, 49-55.

Kudoh, H. & Sonoike, K. (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 215, 541-548. doi:10.1007/s00425-002-0790-9

Lecharny, A., Schwall, M. & Wagner, E. (1985). Stem extension rate in light-grown plants. Plant Physiology, 79, 625-629. doi:10.1104/pp.79.3.625

Luna-Maldonado, A.I., Vidales-Contreras, J.A. & Rodrigues-Fuentes, H. (2017) Advances and trends in development of plant factories. Frontiers Media SA. doi:10.3389/978-2-88945-139-5

Maxwell, K. & Johnson, G.N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51, 659-668. doi:10.1093/jexbot/51.345.659

Moe, R. & Heins, R.D. (1990). Control of plant morphogenesis and flowering by light quality and temperature. Acta Horticulturae, 272, 81-90. doi:10.17660/ActaHortic.1990.272.11

Moe, R., Gromsrud, N., Bratberg, I. & Valsø, S. (1992). Control of plant height in poinsettia by temperature drop and graphical tracking. Acta Horticulturae, 327, 41-48. doi:10.17660/ActaHortic.1992.327.5

Moe, R. & Mortensen, L.M. (1992). Thermomorphogenesis in pot plants. Acta Horticulturae, 305, 19-25. doi:10.17660/ActaHortic.1992.305.2

Mortensen, L.M. & Moe, R. (1992). Effects of various day and night temperature treatments on the morphogenesis and growth of some greenhouse and bedding plant species. Acta Horticulturae, 327, 77-86. doi:10.17660/ActaHortic.1992.327.9

Myster, J. & Moe, R. (1995). Effect of diurnal temperature alternation on plant morphology in some greenhouse crops – a mini review. Scientia Horticulturae, 62, 205-215. doi:10.1016/0304-4238(95)00783-P

Runcle, E. (2009). Controlling height with temperature drops. Greenhouse Product News, 4, 50.

Shibaeva, T.G., Sherudilo, E.G. & Titov, A.F. (2018) Cucumber plant response to constant long-term and daily short-term low temperature treatments. Russian Journal of Plant Physiology, 2(65), 68-77.

Stavang, J.A., Junttila, O., Moe, R. & Olsen, J.E. (2007). Differential temperature regulation of GA metabolism in light and darkness in pea. Journal of Experimental Botany, 58, 3061-3069. doi:10.1093/jxb/erm163

Sysoeva, M., Markovskaya. E. & Kharkina, T. (1977). Optimal temperature drop for the growth and development of young cucumber plants. Plant Growth Regulation, 23, 135-139. doi:10.1023/A:1005834702680

Sysoeva, M., Markovskaya, E., Kharkina, T. & Sherudilo, E. (1999). Temperature drop, dry matter accumulation and cold resistance of young cucumber plants. Plant Growth Regulation, 28, 89-94. doi:10.1023/A:1006243230411

Sysoeva, M.I., Grindal Patil, G., Sherudilo, E.G., Torre, S., Markovskaya, E.F. & Moe, R. (2008). Effect of temperature drop and photoperiod on cold resistance in young cucumber plants – involvement of phytochrome B. Plant Stress, 2, 84-88.

Sweeny, B.M. (1987). Rhythmic phenomena in plants. Academic Press, San Diego, USA.

Theocharis, A., Clement, Ch. & Barka, E.A. (2012). Physiological and molecular changes in plants grown at low temperatures. Planta, 235, 1091-1105. doi:10.1007/s00425-012-1641-y

Tutty, J.R., Hicklenton, P.R., Kristie, D.N. & McRae, K.B. (1994). The influence of photoperiod and temperature on the kinetics of stem elongation in Dendranthema grandiflorum. Journal of the American Society for Horticultural Science, 119, 138-143.

Ueber, E. & Hendriks, L. (1992). Effects of intensity, duration and timing of a temperature drop on the growth and flowering of Euphorbia pulcherrima Willd. ex Klotzsch. Acta Horticulturae, 327, 33-40. doi:10.17660/ActaHortic.1992.327.4

Ueber, E. & Hendriks, L. (1995). Intensity effects of a temperature drop on pelargoniums. Acta Horticulturae, 378, 34. doi:10.17660/ActaHortic.1995.378.3

Vågen, I.M., Moe, R. & Ronglan, E. (2003). Diurnal temperature alternations (DIF/drop) affect chlorophyll content and chlorophyll a/chlorophyll b ratio in Melissa officinalis L. and Ocimum basilicum L., but not in Viola x wittrockiana Gams. Scientia Horticulturae, 97, 153-162. doi:10.1016/S0304-4238(02)00141-3

Downloads

Published

12. 12. 2018

Issue

Section

Agronomy section

How to Cite

SHIBAEVA, T. G., SHERUDILO, E. G., IKKONEN, E. N., & TITOV, A. F. (2018). Responses of young cucumber plants to a diurnal temperature drop at different times of day and night. Acta Agriculturae Slovenica, 111(3), 567–573. https://doi.org/10.14720/aas.2018.111.3.05

Similar Articles

1-10 of 351

You may also start an advanced similarity search for this article.