Protein pattern analysis in tolerant and susceptible wheat cultivars under salinity stress conditions


  • Marouf KHALILI Associate Professor, Department of Agriculture, Payame Noor University, Iran
  • Mohammad Reza NAGHAVI Assistant Professor, Department of Agriculture, Payame Noor University, Iran
  • Said YOUSEFZADEH Assistant Professor, Department of Agriculture, Payame Noor University, Iran



proteomics analysis, salt tolerance, stress response proteins, two-dimensional electrophoresis, wheat


To investigate proteome pattern of wheat cultivars, young leaves were collected from tillering stage of seedlings two weeks after development of the salinity stress. The extraction of proteins from leaf tissue was done and two dimensional electrophoresis using IPG strips and SDS-PAGE in the control and salinity treatments were performed. In total, 198 and 203 protein spots were identified in tolerant (‘Moghan3’) and susceptible (‘Pishtaz’) cultivars respectively. Also, among these, spots number 21 and 22 were detected with significant IF in ‘Moghan3’ and ‘Pishtaz’ respectively. Two-stage mass spectrometry (MS/MS) was used to identify protein spots. Common identified proteins, including proteins involved in removal of oxidants, Calvin cycle proteins, proteins involved in light reaction of photosynthesis and proton transfer, and heat shock protein were identified on basis of the functional groups and their frequency. In total, ‘Moghan3’ maintained the stability of the structure and performance of carbon metabolism under stress better than susceptible cultivar. In addition, defense against oxidative stress induced by salinity stress was performed by 2-cys peroxiredoxin BAS1 and Cu-Zn SOD proteins that tolerant cultivar defended against oxidative stress better than the susceptible cultivar. The greatest strength of ‘Moghan3’ and major weakness in ‘Pishtaz’ are relying on the unique proteins formed under salinity stress for the removal of oxidants and to maintain the activity of the photosynthetic light reactions, respectively.


Abdul Kader, M. D. and Lindberg, S. (2010). Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling and Behavior, 5, 233-238. doi:10.4161/psb.5.3.10740

Albertin, W., Langella, O. Joets, J. Negroni, L. Zivy, M. Damerval C. and Thiellement, H. (2009). Comparative proteomics of leaf, stem, and root tissues of synthetic Brassica napus. Proteomics, 9, 793-799. doi:10.1002/pmic.200800479

Athar, H. U. R. Khan, A. and Ashraf, M. (2008). Exogenously applied ascorbic acid alleviates Salt-induced oxidative stress in wheat. Environmental and Experimental Botany, 63, 224-231. doi:10.1016/j.envexpbot.2007.10.018

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3

Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168, 521-530. doi:10.1002/jpln.200420485

Eberhard, S., Finazzi, G. and Wollman, F. A. (2008). The dynamics of photosynthesis. Annual Review of Genetics, 42, 463-515. doi:10.1146/annurev.genet.42.110807.091452

Fatehi, F., Hosseinzadeh, A. Alizadeh, H. Brimavandi T. and Struik, P. C. (2012). The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Molecular Biology Reports, 39, 6387-6397. doi:10.1007/s11033-012-1460-z

Ford, K. L., A. Cassin, and Bacic, A. (2011). Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Plant Science, 2(44), 1-11.

Gao, L., Yan, X. Li, X. Guo, G. Hu, Y. Ma W. and Yan, Y. (2011). Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Photochemistry, 72(10), 1180-1191. doi:10.1016/j.phytochem.2010.12.008

Granlund, I., Storm, P. Schubert, M. Garcia-Cerdi, J. G. Funk C. and Wolfgang, P. S. (2009). The TL29 Protein is Lumen Located, Associated with PSII and Not an Ascorbate Peroxidase. Plant and Cell Physiology, 50(11), 1898-1910. doi:10.1093/pcp/pcp134

Guo, G., Ge, P. Ma, C. Li, X. Lv, D. Wang, S. Ma W. and Yan, Y. (2012). Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. Journal of Proteomics, 75(6), 1867-1885. doi:10.1016/j.jprot.2011.12.032

Hashimoto, M., Toorchi, M. Matsushita, K. Iwasaki Y. and Komatsu, S. (2009). Proteome analysis of rice root plasma membrane and detection of cold stress responsive proteins. Protein & Peptide Letters, 16, 685-697. doi:10.2174/092986609788490140

Heide, H., Kalisz H. M. and Follmann, H. (2004). The oxygen evolving enhancer protein 1 (OEE) of photosystem II in green algae exhibits thioredoxin activity. Journal of Plant Physiology, 161, 139-149. doi:10.1078/0176-1617-01033

Herbert, B. (1999). Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis, 20(4-5), 660-663. doi:10.1002/(SICI)1522-2683(19990101)20:4/5<660::AID-ELPS660>3.0.CO;2-Q

Hosseini Salekdeh, Gh., Siopongco, J. Wade, L. J. Ghareyazie B. and Bennett, J. (2002). Proteomics analysis of rice leaves during drought stress and recovery. Proteomics, 2, 1131-1145. doi:10.1002/1615-9861(200209)2:9<1131::AID-PROT1131>3.0.CO;2-1

Ifuku, K., Ishihara, S. Shimamoto, S. Ido K. and Sato, F. (2008). Structure, function, and evolution of the PsbP protein family in higher plants. Photosynthesis Research, 98, 427-437. doi:10.1007/s11120-008-9359-1

Joseph, B. and Jini, D. (2010). Proteomic analysis of salinity stress-responsive proteins in plants. Asian Journal of Plant Sciences, 9, 307-313. doi:10.3923/ajps.2010.307.313

Kausar, R., Arshad. M. Shahzad A. and Komatsu, S. (2013). Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids, 44, 345-359. doi:10.1007/s00726-012-1338-3

Kieselbach, T. Bystedt M. and Zentgraf, U. (2000). A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. Febs Letters, 480(2-3), 271-276. doi:10.1016/S0014-5793(00)01890-1

Komatsu, S. and Tanaka, N. (2004). Rice proteome analysis: A step toward functional analysis of the rice genome. Proteomics, 4, 938-949.

Liu, S., Liu, S. Wang, M. Wei, T. Meng, C. Wang, M. and Xia, G. (2014). A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. The Plant Cell, 26, 164-180. doi:10.1105/tpc.113.118687

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405-410. doi:10.1016/S1360-1385(02)02312-9

Morant-Manceau, A., Pradier E. and Tremblin, G. (2004). Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species salt stress. Journal of Plant Physiology, 169, 25-33. doi:10.1078/0176-1617-00963

Naghavi, M. R. (2014). Evaluation of spring wheat cultivars under drought stress and proteome analysis for the most tolerant and sensitive ones. PhD Thesis in Plant Breeding (Biometrical Genetics). Department of Plant Breeding and Biotechnology. Faculty of Agriculture. University of Tabriz, Iran. (In Persian).

Naghavi, M. R. (2010). Response and 2-Dimensional electrophoresis pattern of spring rapeseed genotypes under osmotic stress. Master Science Dissertation in Plant Breeding. Department of Agronomy and Plant Breeding. Faculty of Agriculture, University of Tabriz, Iran. (In Persian).

Noreen, S. and Ashraf, M. (2008). Alleviation of adverse effects of salt stress on sunflower (Helianthus annus L.) by exogenous application of salicylic acid: Growth and photosynthesis. Pakistan Journal of Botany, 40, 1657-1663.

Panchuk, I. I., Zentgraf U. and Volkov, R. A. (2005). Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta, 222(5), 926-932. doi:10.1007/s00425-005-0028-8

Plucken, H., Muller, B. Grohmann, D. Westhoff P. and Eichacker, L. A. (2002). The HCF136 proteinis essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Letters, 532, 85-90. doi:10.1016/S0014-5793(02)03634-7

Porubleva, L., Vander Velden, K. Kothari, S. Oliver D. J. and Chitnis, P. R. (2001). The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis, 22, 1724-1738. doi:10.1002/1522-2683(200105)22:9<1724::AID-ELPS1724>3.0.CO;2-2

Saqib, M., Zorb C. and Schubert, S. (2006). Salt-resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. Journal of Plant Nutrition and Soil Science, 169, 542-548. doi:10.1002/jpln.200520557

Song, X. Ni, Z. Yao, Y. Xie, C. Li, Z. Wu, H. Zhang, Y. and Sun, Q. (2007). Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics, 7(19), 3538-3557. doi:10.1002/pmic.200700147

Spreitzer, R. J. and Salvucci, M. E. (2002). Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annual Review of Plant Biology, 53, 449-475. doi:10.1146/annurev.arplant.53.100301.135233

Sun, Y., Ahokas, R. A. Bhattacharya, S. K. Gerling, I. C. Carbone L. D. and Weber, K. T. (2006). Oxidative stress in aldosteronism. Cardiovascular Research, 71, 300-309. doi:10.1016/j.cardiores.2006.03.007

Takahashi, S. and Murata, N. (2008). How do environmental stresses accelerate photo inhibition? Trends in Plant Science, 13, 178-182. doi:10.1016/j.tplants.2008.01.005

Tamoi, M., Nagaoka, M. Yabuta Y. and Shigeoka, S. (2005). Carbon metabolism in the Calvin cycle. Plant Biotechnology, 22, 355-360. doi:10.5511/plantbiotechnology.22.355

Thiellement, H., Zivy M. and Plomion, C. (2002). Combining proteomic and genetic studies in plants. Chromatography B, 782, 137-149. doi:10.1016/S1570-0232(02)00553-6

Toorchi, M., Yukawa, K. Nouri M. Z. and Komatsu, S. (2009). Proteomics approach for identifying osmotic-stress-related proteins in soybeans roots. Peptides, 30, 2108-2117. doi:10.1016/j.peptides.2009.09.006

Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428, 419-438. doi:10.1016/S0076-6879(07)28024-3

Twyman, R. M. (2004). Principles of proteomics. BIOS Scientific Publishers. doi:10.4324/9780203507391

von Ballmoos, C. and Dimroth, P. (2007). Two distinct proton binding sites in the ATP synthase family. Biochemistry, 46, 11800-11809. doi:10.1021/bi701083v

Wan, X. Y. and Liu, J. Y. (2008). Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Molecular & Cellular Proteomics, 7, 1469-1488. doi:10.1074/mcp.M700488-MCP200

Wang, W., Vinocur, B. Soseyov O. and Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244-52. doi:10.1016/j.tplants.2004.03.006

Xue, G. P., Mcintyre, C. L. Glassop D. and Shorter, R. (2008). Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Molecular Biology, 67, 197-214. doi:10.1007/s11103-008-9311-y

Ye, J., Wang, S. Zhang, F. Xie D. and Yao, Y. (2013). Proteomic analysis of leaves of different wheat genotypes subjected to PEG6000 stress and rewatering. Plant Omics Journal, 6(4), 286-294.

Zadraznik, T. Hollung, K. Egge-Jacobsen, W. Meglic, V. and Sustar-Vozlic, J. (2013). Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). Journal of Proteome, 78, 254-272. doi:10.1016/j.jprot.2012.09.021

Zhu, M., Simons, B. Zhu, N. David, G. Oppenheimer M. and Chen, S. (2010). Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. Journal of Proteomics, 73, 790-805. doi:10.1016/j.jprot.2009.11.002



12. 12. 2018



Agronomy section

How to Cite

KHALILI, M., NAGHAVI, M. R., & YOUSEFZADEH, S. (2018). Protein pattern analysis in tolerant and susceptible wheat cultivars under salinity stress conditions. Acta Agriculturae Slovenica, 111(3), 545–558.

Similar Articles

1-10 of 646

You may also start an advanced similarity search for this article.