The response of corn (Zea mays L.) cultivars to row spacing under weed interference condition

Authors

  • Gholamreza MOHAMMADI Dept. of Crop Production and Breeding, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah, Iran. Postal code: 6715685438
  • Mehdi NOOKANI Dept. of Crop Production and Breeding, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
  • Hamidreza MOHAMMADDOUST Dept. of Crop Production and Breeding, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
  • Danial KAHRIZI Dept. of Crop Production and Breeding, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah, Iran

DOI:

https://doi.org/10.14720/aas.2018.111.3.01

Keywords:

corn, competition, 'KSC 704', 'Maxima', 'Simon', weed, yield, yield component

Abstract

This study was carried out in order to study the response of corn cultivars to row spacing and weed interference at the Research Farm of Agricultural and Natural Resources Faculty, Razi University, Kermanshah, Iran in 2011. The experiment was a split block factorial based on a randomized complete block design with three replications. Factors consisted of three corn cultivars ('KSC 704', 'Simon' and 'Maxima') and three plant row spacings (45, 60 and 75 cm) under weeded and un-weeded conditions for all of the growing season. Results indicated that for all three corn cultivars, the highest weed dry mass occurred in the row spacing of 75 cm. Weed interference throughout the growing season reduced corn grain yield by 20 %. This condition also significantly decreased corn yield components except the 100-seed mass. Increasing plant row spacing increased weed density, while decreased corn yield by 16.5 %. Corn cultivars were significantly different in terms of the number of seed per ear and 100-seed mass, as 'KSC 704' and 'Simon' showed the highest values for these yield components, respectively. However, the number of ear per plant and grain yield were not significantly different between the corn cultivars under study.

References

Akbari, A., Zand E. and Mousavi, S. K. (2011). Evaluation the effect of row space and weed management approaches on biomass, chickpea (Cicer arietinum L.) yield, and yield components in Khorramabad dryland conditions. Electronic Journal of Crop Production,3, 1-21.

Andrade, F. H., Calvino, P., Cirilo, A. and Barbieri, P. (2002). Yield responsesto narrow rows depend on increased radiation interception. Agronomy Journal, 94, 975-980. doi:10.2134/agronj2002.0975

Barbieri, P. A., Echeverría, H. E., SaínzRozas, H. R. and Andrade, F. H. (2008). Nitrogen use efficiency in maize as affected by nitrogen availability and row spacing. Agronomy Journal,100, 1094-1100. doi:10.2134/agronj2006.0057

Berkowitz, A. R. (1988). Competition for resources in weed-crop mixtures.Pages 89–119 in M. A. Altieri and M. Liebman, eds. Weed management in agroecosystems: Ecological approaches. CRC Press, Inc., Boca Raton, FL.

Bradley, K. W. (2006). A review of the effects of row spacing on weed management in corn and soybean.[Online], Available at www.plant management network.org/cm/. Crop Management, doi:10.1094/CM-2006-0227-02-RV

Bullock, D. G., Nielson, R. L. and Nyquist, W. E. (1988). A growth analysis comparison of corn grown in conventional and equidistant plant spacings. Crop Science, 28, 254-258. doi:10.2135/cropsci1988.0011183X002800020015x

Chauhan B. S. and Johnson D. E. (2011). Row spacing and weed control timing affect yield of aerobic rice. Field Crops Research, 121, 226-231. doi:10.1016/j.fcr.2010.12.008

Draper, S. R. (1985). International rules for seed testing. Seed Science and Technology, 13, 342–343.

Drews S., Juroszek P., Neuhoff D., Kopke U. (2004). Optimizing shading ability of winter wheat stands as a method of weed control. Journal of Plant Diseases and Protection, 19, 545–552.

Evans, S. P., Kenezevic, Z. S., Lindquist, J. L., Shapiro, C. A. and Blankenship, E. E. (2003). Nitrogen application influences the critical period for weed control in corn. Weed Science, 15, 408-417. doi:10.1614/0043-1745(2003)051[0408:NAITCP]2.0.CO;2

Ford, G. T. and Mt Pleasant, J. (1994). Competitive abilities of six corn (Zea mays L.) hybrids with four weed control practices. Weed Technology, 8, 124–128. doi:10.1017/S0890037X00039312

Ghadiri, H. and Bayat, M. L. (2004). Effect of row and plant spacing on weed competition with Pinto Beans (Phaseolus vulgaris L.). Journal of Agricultural Science and Technology, 6, 1-9.

Habibisavadkoohi, M., Pirdashti, H., Amini, I., Abbasian, A. and Keramati, S. (2008). Effect of weeding time on the species composition, plant density, dry weight and physiological traits of weeds in corn (Zea mays L.). Iranian Society of Weed Science, 2, 9-21.

Harker, K. N., O’Donovan J. T., Irvine R. B., Turkington T. K., and Clayton G. W. (2009). Integrating cropping systems with cultural techniques augments wild oat (Avena fatua) management in barley. Weed Science, 57, 326–337. doi:10.1614/WS-08-165.1

Johnson, G. A. and Haverstad, T. R. (2002). Effect of row spacing and herbicide application timing on weed control and grain yield in corn (Zea mays L.). Weed Technology, 16, 548-553.

doi:10.1614/0890-037X(2002)016[0548:EORSAH]2.0.CO;2

Lemerle, D., Verbeek, B., Cousens, R. D., Coombes, N. E. (1996). The potential for selecting wheat varieties strongly competitive against weeds. Weed Research, 36, 505–513. doi:10.1111/j.1365-3180.1996.tb01679.x

Lindquist, J. L. and Kropff M. J. (1996). Applications of an ecophysiological model for irrigated rice (Oryza sativa)—Echinochloacompetition. Weed Science, 44, 52–56.

Lindquist, J. L. and Mortensen, D. A. (1999). Tolerance and velvet leaf (Abutilon theophrasti) suppressive ability of two old and two modern corn (Zea mays) hybrids. Weed Science, 46, 569-574.

McDonald, G. K. (2003). Competitiveness against grass weeds in field pea genotypes. Weed Research, 43, 48–58. doi:10.1046/j.1365-3180.2003.00316.x

Mohammadi, G. R. (2007). Growth parameters enhancing the competitive ability of corn (Zea mays L.) against weeds. Weed Biology and Management, 7, 232-236. doi:10.1111/j.1445-6664.2007.00261.x

Mohammadi, G. R. (2010). Weed control in irrigated corn by hairy vetch interseeded at different rates and times. Weed Biology and Management, 10, 25–32. doi:10.1111/j.1445-6664.2010.00363.x

Mohammadi, G. R., Chatrnour, S., Jalali-honarmand, S. and Kahriz, D. (2015). The effects of planting arrangement and phosphate biofertilizer on soybean under different weed interference periods. Acta Agriculturae Slovenica, 105, 313 – 322. doi:10.14720/aas.2015.105.2.14

Mohammadi, G. R., Ghobadi, M. E. and Sheikheh poor, S. (2012a). Phosphate biofertilizer, row spacing and plant density effects on corn (Zea mays L.) yield and weed growth. American Journal of Plant Science, 3, 425-429. doi:10.4236/ajps.2012.34051

Mohammadi, G. R., Mozafari, S., Ghobadi, M. E. and Najaphy, A. (2012b). Interaction effects of weed interference and berseem clover (Trifolium alexandrinum) as a living mulch on corn (Zea mays). Advances in Environmental Biology, 6, 763-767.

Mohler, C. L. (1996). Ecological bases for the cultural control of annual weeds. Journal of Production Agriculture, 9, 468–474. doi:10.2134/jpa1996.0468

Porter, P. M. and Hicks, D. R., Lueschen, W. E., Ford, J. H., Warnes, D. D. and Hoverstad, T. R. (1997). Corn response to row width and plant population in the Northern Corn Belt. Journal of Production Agriculture, 10, 293-300. doi:10.2134/jpa1997.0293

Rajcan, I. and Swanton C. J. (2001). Understanding maize-weed competition:resource competition, light quality and the whole plant. Field Crops Research, 71, 139–150. doi:10.1016/S0378-4290(01)00159-9

SAS Institute (2003). SAS/STAT. User’s Guide.Version 9.1. SAS Inst., Inc., Cary, NC.

So, Y. F., Williams M. M., Pataky J. K., and Davis A. S. (2009). Principal canopy factors of sweet corn and relationships to competitive ability with wildproso millet (Panicum miliaceum). Weed Science, 57, 296–303. doi:10.1614/WS-08-158.1

Teasdale, J. R. (1995). Influence of narrow row/high population corn (Zea mays) on weed control and light transmittance. Weed Technology, 9, 113-118. doi:10.1017/S0890037X00023046

Turgut, I., Duman, A., Bilgili, U. and Acikgoz, E. (2005). Alternate row spacing and plant density effects on forage and dry matter yield of corn hybrids (Zea mays L.). Journal of Agronomy and Crop Science, 191, 146-151. doi:10.1111/j.1439-037X.2004.00146.x

Vera C. L., Woods S. M. and Raney J. P. (2006). Seeding rate and row spacing effect onweed competition, yield and quality of hemp in the Parkland region of Saskatchewan. Canadian Journal of Plant Science, 86, 911-915. doi:10.4141/P05-177

Watson, P. R., D. A. Derksen, and Van Acker R. C. (2006). The ability of 29 barley cultivars to compete and withstand competition. Weed Science, 54, 783–792. doi:10.1614/WS-05-020R3.1

Downloads

Published

12. 12. 2018

Issue

Section

Agronomy section

How to Cite

MOHAMMADI, G., NOOKANI, M., MOHAMMADDOUST, H., & KAHRIZI, D. (2018). The response of corn (Zea mays L.) cultivars to row spacing under weed interference condition. Acta Agriculturae Slovenica, 111(3), 525–533. https://doi.org/10.14720/aas.2018.111.3.01

Similar Articles

1-10 of 364

You may also start an advanced similarity search for this article.