Unravelling efficient applications of agriculturally important microorganisms for alleviation of induced inter-cellular oxidative stress in crops

Authors

  • Chetan KESWANI Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, India
  • Hagera DILNASHIN Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, India
  • Hareram BIRLA Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, India
  • S.P. SINGH Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, India

DOI:

https://doi.org/10.14720/aas.2019.114.1.14

Keywords:

heat stress, ROS, AIMs, abiotic stress, crop protection

Abstract

Abiotic stresses like high temperature, cold, freezing, drought, salinity, flooding or oxidizing agents cause significant loss in the crop yield and quality. Abiotic stresses cause reactive oxygen species (ROS) production such as singlet oxygen (1O2), hydrogen peroxide (H2O2), superoxide radical (O2•−), hydroxyl radical (OH-), etc., that leads to a significant reduction of crop yield. A major source of ROS production in plants through aerobic metabolism is chloroplast, mitochondria, and peroxisome. The tripartite interactions involving Trichoderma- Phytopathogen-Host have received less attention in contrast to the plant–antagonist, plant–pathogen or pathogen–antagonist interactions. This article explores the possibilities of employing thermotolerant strains of agriculturally important microorganisms (AIMs) for alleviating the oxidative stress induced due heat stress in crops by modulating oxidative and defense network of the host.

Author Biography

  • Chetan KESWANI, Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, India

    Senior Researcher

    Department of Mycology and Plant Pathology,
    Institute of Agricultural Sciences,
    Banaras Hindu University

References

Acquaah, G. (2007). Principles of plant breeding and genetics. Malden, MA USA: Blackwell Publishing.

Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55, 373-399. DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701

Arora, A., Sairam, R., & Srivastava, G. (2002). Oxidative stress and antioxidative system in plants. Current science, 1227-1238.

Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant physiology, 141(2), 391-396. DOI: https://doi.org/10.1104/pp.106.082040

Baker, A., & Graham, I. A. (2013). Plant peroxisomes: biochemistry, cell biology and biotechnological applications: Springer Science & Business Media.

Bhatnagar-Mathur, P., Vadez, V., & Sharma, K. K. (2008). Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant cell reports, 27(3), 411-424. DOI: https://doi.org/10.1007/s00299-007-0474-9

Bienert, G. P., Schjoerring, J. K., & Jahn, T. P. (2006). Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(8), 994-1003. DOI: https://doi.org/10.1016/j.bbamem.2006.02.015

Bisen, K., Keswani, C., Patel, J.S., Sarma, B.K. and Singh, H.B. (2016) Trichoderma spp.: Efficient Inducers of Systemic Resistance in Plants. In: Microbial-mediated Induced Systemic Resistance in Plants. Eds. Choudhary, D.K. and Verma, A. Springer Singapore, pp. 185-195. DOI: https://doi.org/10.1007/978-981-10-0388-2_12

Boyer, J. S. (1982). Plant productivity and environment. Science, 218(4571), 443-448. DOI: https://doi.org/10.1126/science.218.4571.443

Broecker, W. S. (1975). Climatic change: are we on the brink of a pronounced global warming? Science, 189(4201), 460-463. DOI: https://doi.org/10.1126/science.189.4201.460

Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., & Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of plant physiology, 162(3), 281-289. DOI: https://doi.org/10.1016/j.jplph.2004.07.014

Canovas, F. M., Dumas‐Gaudot, E., Recorbet, G., Jorrin, J., Mock, H. P., & Rossignol, M. (2004). Plant proteome analysis. Proteomics, 4(2), 285-298. DOI: https://doi.org/10.1002/pmic.200300602

Chawla, S., Jain, S., & Jain, V. (2013). Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Journal of plant biochemistry and biotechnology, 22(1), 27-34. DOI: https://doi.org/10.1007/s13562-012-0107-4

Chitara, M. K., Keswani, C., Bisen, K., Singh, V., Singh, S. P., Sarma, B. K., Singh H. B. (2017) Improving Crop Performance under Heat Stress using Thermo tolerant Agriculturally Important Microorganisms. In: Advances in PGPR Research. Eds. H. B. Singh, B. K. Sarma, C. Keswani. CABI, UK pp. 296-305. DOI: https://doi.org/10.1079/9781786390325.0296

Choudhury, S., Panda, P., Sahoo, L., & Panda, S. K. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant signaling & behavior, 8(4), e23681. DOI: https://doi.org/10.4161/psb.23681

Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop protection, 19(8-10), 709-714. DOI: https://doi.org/10.1016/S0261-2194(00)00094-6

Elstner, E. F. (1991). Metabolisms of oxygen activation in different compartments of plant cells. Active Oxygen/Oxidative Stress and Plant Metabolism., 13-25.

Field, C. B., Barros, V. R., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Genova, R. (2014). IPCC, 2014: Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. DOI: https://doi.org/10.1017/CBO9781107415379

Foyer, C. H., & Noctor, G. (2000). Tansley Review No. 112 Oxygen processing in photosynthesis: regulation and signalling. The New Phytologist, 146(3), 359-388. DOI: https://doi.org/10.1046/j.1469-8137.2000.00667.x

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930. DOI: https://doi.org/10.1016/j.plaphy.2010.08.016

Guilioni, L., Wery, J., & Tardieu, F. (1997). Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs? Annals of Botany, 80(2), 159-168. DOI: https://doi.org/10.1006/anbo.1997.0425

Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant physiology, 141(2), 312-322. DOI: https://doi.org/10.1104/pp.106.077073

Hammond-Kosack, K. E., & Parker, J. E. (2003). Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Current opinion in biotechnology, 14(2), 177-193. DOI: https://doi.org/10.1016/S0958-1669(03)00035-1

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature reviews microbiology, 2(1), 43. DOI: https://doi.org/10.1038/nrmicro797

Hasanuzzaman, M., Hossain, M. A., da Silva, J. A. T., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor Crop stress and its management: Perspectives and strategies (pp. 261-315): Springer. DOI: https://doi.org/10.1007/978-94-007-2220-0_8

Hermosa, R., Viterbo, A., Chet, I., & Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1), 17-25. DOI: https://doi.org/10.1099/mic.0.052274-0

Hintze, K., & Theil, E. (2006). Cellular regulation and molecular interactions of the ferritins. Cellular and molecular life sciences, 63(5), 591. DOI: https://doi.org/10.1007/s00018-005-5285-y

Howarth, C. (2005). Genetic improvements of tolerance to high temperature. In ‘Abiotic stresses–plant resistance through breeding and molecular approaches’.(Eds M Ashraf, PJC Harris) pp. 277–300: The Haworth Press: New York.

Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323. DOI: https://doi.org/10.1038/nature05286

Karl, T. R., Melillo, J. M., Peterson, T. C., & Hassol, S. J. (2009). Global climate change impacts in the United States: Cambridge University Press.

Kazemi‐Pour, N., Condemine, G., & Hugouvieux‐Cotte‐Pattat, N. (2004). The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics, 4(10), 3177-3186. DOI: https://doi.org/10.1002/pmic.200300814

Kehrer, J. P. (2000). The Haber–Weiss reaction and mechanisms of toxicity. Toxicology, 149(1), 43-50. DOI: https://doi.org/10.1016/S0300-483X(00)00231-6

Keswani, C., Surya P. Singh, and H.B. Singh. (2013) A Superstar in Biocontrol Enterprise: Trichoderma spp. Biotech Today 3 (2): 27-30. DOI: https://doi.org/10.5958/2322-0996.2014.00005.2

Keswani, C., Mishra, S., Sarma, B. K., Singh, S. P., & Singh, H. B. (2014). Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied microbiology and biotechnology, 98(2), 533-544. DOI: https://doi.org/10.1007/s00253-013-5344-5

Keswani, C. (2015). Proteomics studies of thermotolerant strain of Trichoderma spp. Ph.D. Thesis, Banaras Hindu University, Varanasi, India, p. 126.

Keswani, C., Bisen, K., Singh, S.P., Sarma, B.K., and Singh H.B. (2016) A proteomic approach to understand the tripartite interactions between plant-Trichoderma-pathogen: investigating the potential for efficient biological control. In: Plant, Soil and Microbes Vol. 2.Mechanisms and Molecular Interactions. Eds. K. R. Hakeem and Mohd. Sayeed Akhtar. Springer USA, pp. 79-93. DOI: https://doi.org/10.1007/978-3-319-29573-2_5

Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Kang, K. Y. (2004). Proteomic analysis of pathogen‐responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics, 4(11), 3569-3578. DOI: https://doi.org/10.1002/pmic.200400999

Kishor, P. K., Sangam, S., Amrutha, R., Laxmi, P. S., Naidu, K., Rao, K., Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current science, 424-438.

Kovacic, P. (2003). Mechanism of drug and toxic actions of gossypol: focus on reactive oxygen species and electron transfer. Current medicinal chemistry, 10(24), 2711-2718. DOI: https://doi.org/10.2174/0929867033456369

Kuo, C., Chen, H., & Ma, L. (1986). Effect of high temperature on proline content in tomato floral buds and leaves. Journal of the American Society for Horticultural Science. DOI: https://doi.org/10.21273/JASHS.111.5.746

Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150(11), 1443-1452. DOI: https://doi.org/10.1016/j.agrformet.2010.07.008

Logan, B. A. (2008). 10 Reactive oxygen species and photosynthesis. Antioxidants and Reactive Oxygen Species in Plants, 250. DOI: https://doi.org/10.1002/9780470988565.ch10

Lorenzoni, I., Jordan, A., Favis-Mortlock, D., Viner, D., & Hall, J. (2001). Developing sustainable practices to adapt to the impacts of climate change: a case study of agricultural systems in eastern England (UK). Regional Environmental Change, 2(3), 106-117. DOI: https://doi.org/10.1007/s101130100025

Lu, Z., Tombolini, R., Woo, S., Zeilinger, S., Lorito, M., & Jansson, J. K. (2004). In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Applied and Environmental Microbiology, 70(5), 3073-3081. DOI: https://doi.org/10.1128/AEM.70.5.3073-3081.2004

Luis, A., Sandalio, L. M., Corpas, F. J., Palma, J. M., & Barroso, J. B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant physiology, 141(2), 330-335. DOI: https://doi.org/10.1104/pp.106.078204

Marra, R., Ambrosino, P., Carbone, V., Vinale, F., Woo, S. L., Ruocco, M., Soriente, I. (2006). Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Current genetics, 50(5), 307-321. DOI: https://doi.org/10.1007/s00294-006-0091-0

Mastouri, F., Björkman, T., & Harman, G. E. (2012). Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Molecular plant-microbe interactions, 25(9), 1264-1271. DOI: https://doi.org/10.1094/MPMI-09-11-0240

Mertz, O., Mbow, C., Reenberg, A., & Diouf, A. (2009). Farmers’ perceptions of climate change and agricultural adaptation strategies in rural Sahel. Environmental management, 43(5), 804-816. DOI: https://doi.org/10.1007/s00267-008-9197-0

Miller, G., Suzuki, N., Ciftci‐Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, cell & environment, 33(4), 453-467. DOI: https://doi.org/10.1111/j.1365-3040.2009.02041.x

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410. DOI: https://doi.org/10.1016/S1360-1385(02)02312-9

Noctor, G., Veljovic‐Jovanovic, S., Driscoll, S., Novitskaya, L., & Foyer, C. H. (2002). Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Annals of Botany, 89(7), 841-850. DOI: https://doi.org/10.1093/aob/mcf096

Ram, R.M., Keswani, C., Bisen, K., Tripathi, R., Singh, S.P., Singh, H.B. (2018). Biocontrol Technology: Eco-Friendly Approaches for Sustainable Agriculture. In: Brah, D., Azevedo, V. (eds) Omics Technologies and Bio-Engineering: Towards Improving Quality of Life Volume II Microbial, Plant, Environmental and Industrial Technologies. Academic Press, London, U.K. pp. 177-190. DOI: https://doi.org/10.1016/B978-0-12-815870-8.00010-3

Ramonell, K. M., & Somerville, S. (2002). The genomics parade of defense responses: to infinity and beyond. Current opinion in plant biology, 5(4), 291-294. DOI: https://doi.org/10.1016/S1369-5266(02)00266-2

Rasheed, R., Wahid, A., Farooq, M., Hussain, I., & Basra, S. M. (2011). Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant growth regulation, 65(1), 35-45. DOI: https://doi.org/10.1007/s10725-011-9572-3

Sasaki, T. (1997). Science of the rice plant (Genetics): Nobunkyo.

Saseendran, S., Singh, K., Rathore, L., Singh, S., & Sinha, S. (2000). Effects of climate change on rice production in the tropical humid climate of Kerala, India. Climatic Change, 44(4), 495-514. DOI: https://doi.org/10.1023/A:1005542414134

Schoffl, F., Prandl, R., Hinderhofer, K., & Reindl, A. (1997). Molecular and applied aspects of the heat stress response and of common stress tolerance in plants. Acta Physiologiae Plantarum, 19(4). DOI: https://doi.org/10.1007/s11738-997-0052-3

Sharma, P., & Dubey, R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant growth regulation, 46(3), 209-221. DOI: https://doi.org/10.1007/s10725-005-0002-2

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany, 2012. DOI: https://doi.org/10.1155/2012/217037

Singh, H.B, Sarma, B.K., Keswani, C. (2017) Advances in PGPR Research CABI- UK. 408 pages, ISBN-9781786390325. DOI: https://doi.org/10.1079/9781786390325.0000

Singh, H.B, Sarma, B.K., Keswani, C. (2016). Agriculturally Important Microorganisms: Commercialization and Regulatory Requirements in Asia. Springer, Singapore. 336 pages, ISBN-13: 978-9811025754

Shoeb, M., Singh, B. R., Khan, J. A., Khan, W., Singh, B. N., Singh, H. B., & Naqvi, A. H. (2013). ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3), 035015. DOI: https://doi.org/10.1088/2043-6262/4/3/035015

Smolka, B., Lukac, R., Chydzinski, A., Plataniotis, K. N., & Wojciechowski, W. (2003). Fast adaptive similarity based impulsive noise reduction filter. Real-Time Imaging, 9(4), 261-276. DOI: https://doi.org/10.1016/j.rti.2003.09.015

Suárez, M. B., Sanz, L., Chamorro, M. I., Rey, M., González, F. J., Llobell, A., & Monte, E. (2005). Proteomic analysis of secreted proteins from Trichoderma harzianum: identification of a fungal cell wall-induced aspartic protease. Fungal Genetics and Biology, 42(11), 924-934. DOI: https://doi.org/10.1016/j.fgb.2005.08.002

Taiz, L., & Zeiger, E. (2006). Plant physiology. 4th. Sinauer Associate, Sunderland, Mass., EUA.

Tripathy, B. C., & Oelmüller, R. (2012). Reactive oxygen species generation and signaling in plants. Plant signaling & behavior, 7(12), 1621-1633. DOI: https://doi.org/10.4161/psb.22455

Trovato, M., Mattioli, R., & Costantino, P. (2008). Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, 19(4), 325-346. DOI: https://doi.org/10.1007/s12210-008-0022-8

Tucci, M., Ruocco, M., De Masi, L., De Palma, M., & Lorito, M. (2011). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology, 12(4), 341-354. DOI: https://doi.org/10.1111/j.1364-3703.2010.00674.x

Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. DOI: https://doi.org/10.1016/S0168-9452(01)00452-6

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. DOI: https://doi.org/10.1016/j.soilbio.2007.07.002

Vollenweider, P., & Günthardt-Goerg, M. S. (2005). Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environmental Pollution, 137(3), 455-465. DOI: https://doi.org/10.1016/j.envpol.2005.01.032

Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental botany, 61(3), 199-223. DOI: https://doi.org/10.1016/j.envexpbot.2007.05.011

Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252. DOI: https://doi.org/10.1016/j.tplants.2004.03.006

Wang, Y., Mopper, S., & Hasenstein, K. H. (2001). Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. Journal of chemical ecology, 27(2), 327-342. DOI: https://doi.org/10.1023/A:1005632506230

Willits, D., & Peet, M. (1998). The effect of night temperature on greenhouse grown tomato yields in warm climates. Agricultural and Forest Meteorology, 92(3), 191-202. DOI: https://doi.org/10.1016/S0168-1923(98)00089-6

Downloads

Published

8. 10. 2019

Issue

Section

Agronomy section

How to Cite

KESWANI, C., DILNASHIN, H., BIRLA, H., & SINGH, S. (2019). Unravelling efficient applications of agriculturally important microorganisms for alleviation of induced inter-cellular oxidative stress in crops. Acta Agriculturae Slovenica, 114(1), 121–130. https://doi.org/10.14720/aas.2019.114.1.14