Calculation of water balance of the weighing lysimeter for assessment of aquifer recharge

Authors

  • Barbara ČENČUR CURK University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology, Slovenia
  • Špela ŠERJAK
  • Vesna ZUPANC University of Ljubljana, Biotechnical Faculty, Dept. of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia

DOI:

https://doi.org/10.14720/aas.2019.114.2.11

Keywords:

water balance, groundwater recharge, monolithic weighing lysimeter, Ljubljansko polje, unsaturated zone

Abstract

Ljubljana field aquifer is an important source of drinking water for the Ljubljana city and surrounding areas. Knowledge of the water balance and of the water flow dynamics through the unsaturated zone and recharge of Ljubljana field aquifer is crucial. The water balance assessment of the upper unsaturated zone provides an insight into groundwater recharge and renewal. With the help of build-in monolith weighing lysimeter in Kleče in Ljubljana we have assessed the water balance for hydrological year from March 2014 to February 2015. Water balance parameters, precipitation and evapotranspiration were determined from the changes in the mass of lysimeter and outflow tank. Precipitation events were evaluated based on their duration, intensity and the amount of precipitation. Evapotranspiration and the duration of precipitation were estimated based on the changes of the lysimeter mass. Results show that the chosen period was extremely wet. In the selected hydrological year, precipitation contributed to positive water balance of the upper unsaturated zone, as well as to the recharge of the aquifer.

References

Allen R. G., Pereira L. S., Raes D., Smith M. (1998). Crop evapotranspiration – Guidelines for Computing Crop Water Requirements. Rome: Food and Agriculture Organization of the United Nations.

Allen, R.G., Pruitt, W.O., Wright, J.L., Howell, T.A., Ventura, F., Snyder R. (2006). A recommendation on standardized surface resisdence for hourly calculation of reference ET0 by the FAO56 Penman–Monteith method. Agricultural Water Management, 81, 1−22. https://doi.org/10.1016/j.agwat.2005.03.007

Allen R.G., Pereira L.S., Howell T.A., Jensen M.E. (2011). Evapotranspiration information reporting: I. Factors governing measurement Accuracy: review. Agricultural Water Management, 98, 899–920. https://doi.org/10.1016/j.agwat.2010.12.015

ARSO. (2018). Pregled agrometeoroloških spremenljivk: Tabela (dnevni podatki v mesecu) za meteorološko postajo Ljubljana Bežigrad. Pridobljeno s http://meteo.arso.gov.si/met/sl/agromet/data/month/

ARSO. (2019a). Meteorološka postaja Ljubljana Bežigrad: Povratne dobe za ekstremne padavine (novejša različica). Pridobljeno s http://meteo.arso.gov.si/uploads/probase/www/climate/table/sl/by_variable/return-periods/Ljubljana%20Bezigrad.pdf

ARSO. (2019b). Mesečna povprečja višine padavin. Pridobljeno s http://meteo.arso.gov.si/met/sl/climate/maps/monthly-mean-precipitation-maps/

Bračič Železnik B., Zupanc V., Pintar M. (2011). Naravno ozadje nitratov – meritve na lizimetru Kleče na Ljubljanskem polju. V 22. Mišičev vodarski dan: zbornik referatov (str. 120−125). Maribor : Vodnogospodarski biro Maribor.

Breznik M. (1969). Groundwater of the Ljubljana polje and possibilities of increasing its exploitation. Geologija, 12, 165–184.

Brilly M., Gorišek M. (1985). Matematični model podtalnice Ljubljanskega polja : II. Faza raziskave podtalne vode na Ljubljanskem Barju, Ljubljana : FAGG, Laboratorij za mehaniko tekočin.

GURS. (2017). Državna pregledna karta merila 1 : 250 000 [online]. Pridobljeno s https://www.e-prostor.gov.si/zbirke-prostorskih-podatkov/topografski-in-kartografski-podatki/topografski-podatki-in-karte/drzavne-pregledne-karte/#tab2-1044%3E.

Jamnik B., Urbanc J. (2000). Izvor in kakovost podzemne vode Ljubljanskega polja = Origin and guality of groundwater from Ljubljansko polje. RMZ Materiali in geookolje, 47(2), 168−178.

Klammler G., Fank, J. (2014). Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria). Science of The Total Environment, 499, 448–462. https://doi.org/10.1016/j.scitotenv.2014.06.009

Kohfahl, C., Molano-Leno, L., Martinez, G., Vanderlinden, K., Guardiola-Albert, C., Moreno, L. (2019). Determining groundwater recharge and vapor flow in dune sediments using a weighable precision meteo lysimeter. Science of the Total Environment, 656, 550–557. https://doi.org/10.1016/j.scitotenv.2018.11.415

McGrath S., Ratej J., Jovičić V., Čenčur Curk B. (2015). Hydraulic characteristics of alluvial gravels for different particle sizes across a wide range of pressure heads. Vadose zone Journal, 14(3), 1539–1663. https://doi.org/10.2136/vzj2014.08.0112

Meissner R., Seeger J., Rupp H., Seyfarth M., Borg H. (2007). Measurement of dew, fog, and rime with a high precision gravitation Lysimeter. Journal of Plant Nutrition and Soil Science, 170(1), 335–344. https://doi.org/10.1002/jpln.200625002

Meissner R., Prasad M. N., Laing G., Rinklebe J. (2010). Lysimeter application for measuring the water and solute fluxes with high precision. Current Science, 99(5), 601−607.

Pintar M. (2003). Lizimetri v Sloveniji. V 14. Mišičev vodarski dan: zbornik referatov (str. 104−110). Maribor : Vodnogospodarski biro Maribor.

Schrader, F., Durner, W., Fank, J., Gebler, S., Pütz, T., Hannes, M., Wollschläger, U. (2013). Estimating precipitation and actual evapotranspiration from precision lysimeter measurements. Procedia Environmental Sciences, 19, 543–552. https://doi.org/10.1016/j.proenv.2013.06.061

Šerjak, Š. (2019). Določitev napajanja vodonosnika s pomočjo lizimetra v Klečah v Ljubljani. Magistrska naloga. Naravoslovnotehniška fakulteta. https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=108920

Šram D., Brenčič M., Lapanje A., Janža M. (2012). Prostorski model visečih vodonosnikov na Ljubljanskem polju = Perched aquifers spatial model: a case study for Ljubljansko polje (central Slovenia). Geologija, 55(1), 107–116. https://doi.org/10.5474/geologija.2012.008

Vižintin G., Souvent P., Veselič M., Čencur Curk B. (2009). Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. Journal of Hydrology, 377(3), 261−273. https://doi.org/10.1016/j.jhydrol.2009.08.025

von Unold, G., Fank, J. (2008). Modular Design of Field Lysimeters for Specific Application Needs. Water, Air, & Soil Pollution, 8(2), 233–242. https://doi.org/10.1007/s11267-007-9172-4

Vrzel J., Solomon K.D., Blažeka Ž., Ogrinc N. (2018). The study of the interactions between groundwater and Sava River water in the Ljubljansko polje aquifer system (Slovenia). Journal of Hydrolgy, 556, 384–396. https://doi.org/10.3390/w11091753

Urbanc J., Jamnik B. (1998). Izotopske raziskave podzemne vode Ljubljanskega polja = Isotope investigations of groundwater from Ljubljansko polje (Slovenia). Geologija, 41(1), 355−364. https://doi.org/10.5474/geologija.1998.018

Urbanc J., Jamnik B. (2007). Porazdelitev in izvor nitratov v podzemni vodi Ljubljanskega polja. Geologija, 50(2), 468−475. https://doi.org/10.5474/geologija.2007.032

Zupanc V., Nolz R., Cepuder P., Bračič-Železnik B., Pintar M. (2012). Determination of water balance components with high precision weighing lysimeter Kleče. Acta agriculturae Slovenica, 99, 165–173. https://doi.org/10.2478/v10014-012-0016-1

Published

13. 12. 2019

Issue

Section

Agronomy section

How to Cite

ČENČUR CURK, B., ŠERJAK, Špela, & ZUPANC, V. (2019). Calculation of water balance of the weighing lysimeter for assessment of aquifer recharge. Acta Agriculturae Slovenica, 114(2), 259–267. https://doi.org/10.14720/aas.2019.114.2.11

Similar Articles

1-10 of 254

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>