The response of the sugar beet (Beta vulgaris L.ssp. vulgaris var. altissima Döll) genotypes to heat stress in initial growth stage


  • Mohammad MALMIR Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
  • Rahim MOHAMMADIAN Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization (AREO), Karaj, Iran
  • Ali SOROOSHZADEH Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
  • Ali MOKHTASSI-BIDGOLI Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
  • Somayeh EHSANFAR Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran



genotype screening, heat stress, leaf temperature depression, Fv/Fm, seed vigor index


The continuous trend of global warming and increasing interest toward cultivating sugar beet (Beta vulgaris L. ssp. vulgaris var. altissima Döll) in tropical regions led us to conduct this study to investigate the effect of high temperature on sugar beet at initial growth stages. Thirty one genotypes were incubated at two temperatures (20 °C and 30 °C) in laboratory for germination test. The same genotypes were assessed for physiological parameters at 30 °C in greenhouse, too. Increasing temperature decreased germination indices with a high variability among the genotypes. Seed vigor index and seminal root length were decreased higher than other indices. The genotypes with higher greenness index had higher total dry mass, leaf area and leaf temperature depression (LTD), and those with higher seed vigor index indicated great quantum efficiency of PSII (Fv/Fm) values. ‘S1-92521’ produced high records in both laboratory and greenhouse experiments. Although ‘S1-92521’ showed good tolerance in both laboratory and greenhouse experiments, totally, sugar beet genotypes had different performance at two experiments. According to the results, seed vigor index could be used as a screening tool in laboratory, and LTD and Fv/Fm were considered as good criteria for screening heat-tolerant genotypes in greenhouse.


Agrawal, R. L. (2003). Seed technology. Pub. Co. Pvt. Ltd. New Delhi. India.

Arx, G., Graf Pannatier, E., Thimonier, A., and Rebetez, M. (2013). Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. Journal of ecology, 101(5), 1201-1213.

Ashraf, M., Saeed, M. M., and Qureshi, M. J. (1994). Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environmental and Experimental Botany, 34(3), 275-283.

Baalbaki, R., Elias, S., Marcos-Filho, J., and McDonald, M. B. (2009). Seed vigor testing handbook. Contribution No. 32 to the handbook on seed testing. Assoc. Offic. Seed Anal., Ithaca, New York.

Bafeel, S. O. (2014). Physiological parameters of salt tolerance during germination and seedling growth of Sorghum bicolor cultivars of the same subtropical origin. Saudi journal of biological sciences, 21(4), 300-304.

Balota, M., Payne, W. A., Evett, S. R., and Peters, T. R. (2008). Morphological and physiological traits associated with canopy temperature depression in three closely related wheat lines. Crop Science, 48(5), 1897-1910.

Beckage, B., and Clark, J. S. (2003). Seedling survival and growth of three forest tree species: the role of spatial heterogeneity. Ecology, 84(7), 1849-1861.[1849:SSAGOT]2.0.CO;2

Bin, Z., Qingya, W., and Canming, T. (2008). Anatomic analysis on heterosis in three transgenic bt pest-resistant hybrid cotton (G. hirsutum L.). Acta Agronomica Sinica.

Buchner, O., Stoll, M., Karadar, M., Kranner, I., and Neuner, G. (2015). Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants. Plant, cell & environment, 38(4), 812-826.

Caird, M. A., Richards, J. H., and Donovan, L. A. (2007). Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant physiology, 143(1), 4-10.

Carpýcý, E. B., Celýk, N., and Bayram, G. (2009). Effects of salt stress on germination of some maize (Zea mays L.) cultivars. African Journal of Biotechnology, 8(19).

Cha-um, S., Boriboonkaset, T., Pichakum, A., and Kirdmanee, C. (2009). Multivariate physiological indices for salt tolerance classification in indica rice (Oryza sativa L. spp. indica). General and Applied Plant Physiology, 35(1/2), 75-87.

Cha-um, S., Chuencharoen, S., Mongkolsiriwatana, C., Ashraf, M., and Kirdmanee, C. (2012). Screening sugarcane (Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis. Plant Cell, Tissue and Organ Culture (PCTOC), 110(1), 23-33.

Chaves, M. M. (1991). Effects of water deficits on carbon assimilation. Journal of experimental Botany, 42(1), 1-16.

El-Hendawy, S. E., Hu, Y., and Schmidhalter, U. (2007). Assessing the suitability of various physiological traits to screen wheat genotypes for salt tolerance. Journal of Integrative Plant Biology, 49(9), 1352-1360.

El-Kholi, M. M. (2008). Sugar Crops Research Institute, Giza (Egypt): A Profile. Sugar Tech, 10(3), 189-196.

Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., and Ihsan, M. Z. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in plant science, 8, 1147.

Fukuoka, M. (2005). Improvement of a method for measuring canopy temperature in field crops using an infrared thermograph. Hokkaido University, Sapporo, Japan, 1-45.

Gilbert, M. E., Zwieniecki, M. A., and Holbrook, N. M. (2011). Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. Journal of Experimental Botany, 62(8), 2875-2887.

González-Dugo, M. P., Moran, M. S., Mateos, L., and Bryant, R. (2006). Canopy temperature variability as an indicator of crop water stress severity. Irrigation Science, 24(4), 233.

Gratani, L., Pesoli, P., Crescente, M. F., Aichner, K., and Larcher, W. (2000). Photosynthesis as a temperature indicator in Quercus ilex L.. Global and Planetary Change, 24(2), 153-163.

Grzesiak, S., Grzesiak, M. T., Filek, W., and Stabryła, J. (2003). Evaluation of physiological screening tests for breeding drought resistant triticale (x Triticosecale Wittmack). Acta physiologiae plantarum, 25(1), 29-37.

Gutierrez, M., Reynolds, M. P., Raun, W. R., Stone, M. L., and Klatt, A. R. (2010). Spectral water indices for assessing yield in elite bread wheat genotypes under well-irrigated, water-stressed, and high-temperature conditions. Crop Science, 50(1), 197-214.

Havaux, I. (1993). Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant, Cell & Environment, 16(4), 461-467.

ISTA International Seed Testing Association (2014). Seed Vigour Testing. International Rules for Seed Testing, Zurich, Switzerland.

ISTA International Seed Testing Association (2010). International rules for seed testing, edition. 2010. Bassersdorf- Switzerland. The International Seed Testing Association.

Joshi, A. K., Mishra, B., Chatrath, R., Ferrara, G. O., and Singh, R. P. (2007). Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica, 157(3), 431-446.

Juan, M., Rivero, R. M., Romero, L., and Ruiz, J. M. (2005). Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environmental and Experimental Botany, 54(3), 193-201.

Karandish, F., Mousavi, S. S., and Tabari, H. (2017). Climate change impact on precipitation and cardinal temperatures in different climatic zones in Iran: analyzing the probable effects on cereal water-use efficiency. Stochastic Environmental Research and Risk Assessment, 31(8), 2121-2146.

Killi, D., Bussotti, F., Raschi, A., and Haworth, M. (2017). Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiologia plantarum, 159(2), 130-147.

Kumar, M., Govindasamy, V., Rane, J., Singh, A. K., Choudhary, R. L., Raina, S. K., ... and Singh, N. P. (2017). Canopy temperature depression (CTD) and canopy greenness associated with variation in seed yield of soybean genotypes grown in semi-arid environment. South African Journal of Botany, 113, 230-238.

Lawson, T., von Caemmerer, S., and Baroli, I. (2010). Photosynthesis and stomatal behaviour. In: Progress in botany 72 (pp. 265-304). Springer, Berlin, Heidelberg.

Liu, X., and Huang, B. (2008). Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass. Journal of plant physiology, 165(18), 1947-1953.

Liu, Y. H., Shen, Y., Chen, Z. D., Wang, Z. F., and Yan, W. (2012). Identification of salt tolerance in peanut varieties/lines at the germination stage. Chinese Journal of Oil Crop Sciences, 34(2), 168-173.

Marias, D. E., Meinzer, F. C., and Still, C. (2017). Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica. Ecology and Evolution, 7(4), 1297-1310.

Martínez-Calvo, J., Gisbert, A. D., Alamar, M. C., Hernandorena, R., Romero, C., Llácer, G., and Badenes, M. L. (2008). Study of a germplasm collection of loquat (Eriobotrya japonica Lindl.) by multivariate analysis. Genetic Resources and Crop Evolution, 55(5), 695-703.

Maxwell, K., and Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of experimental botany, 51(345), 659-668.

McElwain, J. C., Yiotis, C., and Lawson, T. (2016). Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytologist, 209(1), 94-103.

Miner, G. L., Bauerle, W. L., and Baldocchi, D. D. (2017). Estimating the sensitivity of stomatal conductance to photosynthesis: a review. Plant, Cell & Environment, 40(7), 1214-1238.

Mohammadian, R., Khoyi, F. R., Rahimian, H., Moghadam, M., Ghassemi-Golezani, K., and Sadeghian, S. Y. (2010). The effects of early season drought on stomatal conductance, leaf-air temperature difference and proline accumulation in sugar beet genotypes. Journal of Agricultural Science and Technology, 3, 181-192.

Mohammadian, R., Rahimian, H., Moghaddam, M., and Sadeghian, S. Y. (2003). The effect of early season drought on chlorophyll a fluorescence in sugar beet (Beta vulgaris L.). Pakistan Journal of Biological Sciences (Pakistan).

Mohammadian, R., Moghaddam, M., Rahimian, H., and Sadeghian, S. Y. (2005). Effect of early season drought stress on growth characteristics of sugar beet genotypes. Turkish Journal of Agriculture and Forestry, 29(5), 357-368.

Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.

Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., and Iba, K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science, 287(5452), 476-479.

Nagar, S., Singh, V. P., Arora, A., Dhakar, R., and Ramakrishnan, S. (2015). Assessment of terminal heat tolerance ability of wheat genotypes based on physiological traits using multivariate analysis. Acta physiologiae plantarum, 37(12), 257.

Ober, E. S., and Rajabi, A. (2010). Abiotic stress in sugar beet. Sugar Tech, 12(3-4), 294-298.

Pandey, M., and Penna, S. (2017). Time course of physiological, biochemical, and gene expression changes under short-term salt stress in Brassica juncea L. The Crop Journal, 5(3), 219-230.

Pinto, R. S., Reynolds, M. P., Mathews, K. L., McIntyre, C. L., Olivares-Villegas, J. J., and Chapman, S. C. (2010). Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical and Applied Genetics, 121(6), 1001-1021.

Reynolds, M., Manes, Y., Izanloo, A., and Langridge, P. (2009). Phenotyping approaches for physiological breeding and gene discovery in wheat. Annals of Applied Biology, 155(3), 309-320.

Reynolds, M. P., Balota, M., Delgado, M. I. B., Amani, I., and Fischer, R. A. (1994). Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Functional Plant Biology, 21(6), 717-730.

Rizhsky, L., Liang, H., and Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant physiology, 130(3), 1143-1151.

Sadeghian, S.Y. and Yavari, N., 2004. Effect of water-deficit stress on germination and early seedling growth in sugar beet. Journal of Agronomy and Crop Science, 190(2), pp.138-144.

Sarabi, B., Bolandnazar, S., Ghaderi, N., and Tabatabaei, S. J. (2016). Multivariate analysis as a tool for studying the effects of salinity in different melon landraces at germination stage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1), 264-271.

Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., and Pugh, T. A. (2017). Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 8, 13931.

Sharma, D. K., Andersen, S. B., Ottosen, C. O., and Rosenqvist, E. (2015). Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 153(2), 284-298.

Shelke, D. B., Pandey, M., Nikalje, G. C., Zaware, B. N., Suprasanna, P., and Nikam, T. D. (2017). Salt responsive physiological, photosynthetic and biochemical attributes at early seedling stage for screening soybean genotypes. Plant Physiology and Biochemistry, 118, 519-528.

Silva, E. N., Ferreira-Silva, S. L., de Vasconcelos Fontenele, A., Ribeiro, R. V., Viégas, R. A., and Silveira, J. A. G. (2010). Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. Journal of Plant Physiology, 167(14), 1157-1164.

Thapa, S., Jessup, K. E., Pradhan, G. P., Rudd, J. C., Liu, S., Mahan, J. R., and Xue, Q. (2018). Canopy temperature depression at grain filling correlates to winter wheat yield in the US Southern High Plains. Field Crops Research, 217, 11-19.

TeKrony, D. M., and Egli, D. B. (1991). Relationship of seed vigor to crop yield: a review. Crop Science, 31(3), 816-822.

Urban, J., Ingwers, M. W., McGuire, M. A., and Teskey, R. O. (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. Journal of experimental botany, 68(7), 1757-1767.

Wang, D., Heckathorn, S. A., Barua, D., Joshi, P., Hamilton, E. W., and LaCroix, J. J. (2008). Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. American Journal of Botany, 95(2), 165-176.

Webber, H., Martre, P., Asseng, S., Kimball, B., White, J., Ottman, M., and Kassie, B. (2017). Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research, 202, 21-35.

Xu, Z. Z., and Zhou, G. S. (2005). Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant and Soil, 269(1-2), 131-139.

Xu, Z. Z., Zhou, G. S., and Shimizu, H. (2009). Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop Science, 49(5), 1843-1851.

Yang, H., Grassini, P., Cassman, K. G., Aiken, R. M., and Coyne, P. I. (2017). Improvements to the Hybrid-Maize model for simulating maize yields in harsh rainfed environments. Field crops research, 204, 180-190.

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., and Gómez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2-12.

Zheng, Y., Xu, M., Hou, R., Shen, R., Qiu, S., and Ouyang, Z. (2013). Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Ecology and Evolution, 3(9), 3095-3111.

Zhou, R., Yu, X., Kjær, K. H., Rosenqvist, E., Ottosen, C. O., and Wu, Z. (2015). Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany, 118, 1-11.



18. 02. 2020



Agronomy section

How to Cite

MALMIR, M., MOHAMMADIAN, R., SOROOSHZADEH, A., MOKHTASSI-BIDGOLI, A., & EHSANFAR, S. (2020). The response of the sugar beet (Beta vulgaris L.ssp. vulgaris var. altissima Döll) genotypes to heat stress in initial growth stage. Acta Agriculturae Slovenica, 115(1), 39–52.

Similar Articles

1-10 of 538

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)