Assessment of genetic diversity of Turkish and Algerian native sheep breeds

Authors

  • Abdelkader AMEUR AMEUR University of Tlemcen, Department of Biology, Laboratory of Physiopathology and Biochemistry of Nutrition, Algeria
  • Onur YILMAZ Adnan Menderes University, Faculty of Agriculture, Department of Animal Science, Aydın, Turkey
  • Nezih ATA Adnan Menderes University, Faculty of Agriculture, Department of Animal Science, Aydın, Turkey
  • Ibrahim CEMAL Adnan Menderes University, Faculty of Agriculture, Department of Animal Science, Aydın, Turkey
  • Semir Bechir Suheil GAOUAR University of Tlemcen, Department of Biology, Laboratory of Physiopathology and Biochemistry of Nutrition, Algeria

DOI:

https://doi.org/10.14720/aas.2020.115.1.1229

Keywords:

small ruminants, native sheep breeds, genetic diversity, microsatellite, genetic distances

Abstract

In Algeria and Turkey, the sheep production systems are based on the under extensive rural conditions and their genetic management has led to increased homozygosity and hence productivity loss. The identification of inter-breed and intra-breed genetic diversity plays a key role in the shaping of conservation and breeding programs. The present study was conducted to investigate the genetic diversity of native sheep breeds reared in Turkey and Algeria. A total of 240 animals from four Algerian (Hamra, Ouled Djellal, Sidaou, and Tazegzawt) and four Turkish (White Karaman, South Karaman, Karacabey Merino, and Kıvırcık) native sheep breeds were genotyped with fourteen microsatellite markers recommended by FAO. A total of 340 alleles were detected from fourteen markers studied. All the eight breeds exhibited moderate to high levels of genetic diversity, with a slight superiority of the Algerian sheep breeds. Overall FIS value was low, but highly significant (p < 0.001). It may have been due to the high inbreeding within the population. The mean global coefficient of gene differentiation (GST) showed that approximately 94.0 % of the genetic variation was within-population. The highest number of private alleles with a frequency above 5 % was observed in Ouled Djellal sheep. Structure analysis of populations studied revealed the most appropriate K with four genetic clusters. As the result, the dendrogram showed that the Algerian sheep breeds were completely separated from the Turkish sheep breeds furthermore the Bayesian clustering revealed a high level of admixture, especially in Algerian sheep populations.

References

Ameur Ameur, A., Ata, N., Benyoucef, M. T., Djaout, A., Azzi, N., Yilmaz, O., … Gaouar, S. B. S. (2018). New genetic identification and characterization of 12 Algerian sheep breeds by microsatellite markers. Italian Journal of Animal Science, 17(1), 38–48. https://doi.org/10.1080/1828051X.2017.1335182

Askari, N., Mohammad, A. M., & Baghizadeh, A. (2011). ISSR markers for assessing DNA polymorphism and genetic characterization of cattle, goat and sheep populations. Iranian Journal of Biotechnology, 9(3), 222–229.

Cemal, İ., Yılmaz, O., Karaca, O., Binbaş, P., & Ata, N. (2013). Analysis of genetic diversity in indigenous Çine Çaparı sheep under conservation by microsatellite markers. Kafkas Univ Vet Fak Derg, 19, 383–390.

Chellig, R. (1992). Les « races » ovines algériennes. Editions. Alger: Office des Publications Universitaires.

Dakin, E. E., & Avise, J. C. (2004). Microsatellite null alleles in parentage analysis. Heredity, 93, 504–509. https://doi.org/10.1038/sj.hdy.6800545

Djaout, A., Afri-Bouzebda, F., Chekal, F., El-Bouyahiaoui, R., Rabhi, A., Boubekeur, A., … Gaouar, S. B. S. (2017). Biodiversity state of Algerian sheep breeds. Genetics and Biodiversity Journal, 1(1), 1–18.

Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7

Ertuğrul, M., Dellal, G., Soysal, İ., Elmacı, C., Akın, O., Arat, S., … Yılmaz, O. (2009). Türkiye Yerli Koyun Irklarının Korunması. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 23(2), 97–119.

Evanno, G., Regnaut, S., & Goudet. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

FAO. (2011). Molecular Genetic Characterization of Animal Genetic Resources. Rome, Italy: Food and Agricultural Organization of the United Nations.

FAO. (2016). FAOSTAT data. Retrieved from http://www.fao.org/faostat/en/#data

Gaouar, S. B. S, Lafri, M., Djaout, A., El-Bouyahiaoui, R., Bouri, A., Bouchatal, A., … Da Silva, A. (2016a). Genome-wide analysis highlights genetic dilution in Algerian sheep. Heredity, 118, 293–301. https://doi.org/10.1038/hdy.2016.86

Gaouar, S. B. S., Kdidi, S., & Ouragh, L. (2016b). Estimating population structure and genetic diversity of five Moroccan sheep breeds by microsatellite markers. Small Ruminant Research, 144, 23–27. https://doi.org/10.1016/j.smallrumres.2016.07.021

Gaouar, S. B. S., Da Silva, A., Ciani, E., Kdidi, S., Aouissat, M., Dhimi, L., … Mehtar, N. (2015). Admixture and local breed marginalization threaten Algerian sheep diversity. PLoS One, 10, e0122667. https://doi.org/10.1371/journal.pone.0122667

Gaouar, S. B. S., Kdidi, S., Tabet Aouel, N., Aït-Yahia, R., Boushaba, N., Aouissat, M., … Saidi-Mehtar, N. (2014). Genetic admixture of NorthAfrican ovine breeds as revealed by microsatellite loci. Livest Res Rural Dev. 26(7).

Ghernouti, N., Bodinier, N., Ranebi, M., Maftah, D., Petit, D. & Gaouar, S. B. S., (2017). Control Region of mtDNA identifies three migration events of sheep breeds in Algeria. Small Ruminant Research, 155, 66–71. https://doi.org/10.1016/j.smallrumres.2017.09.003

Goudet, J. (2001). FSTAT (Version 2.9.3.). A Program to Estimate and Test Gene Diversities and Fixation Indices. Lausanne. Switzerland: University of Lausanne.

Guang-Xin, E, Zhong, T., Ma, Y. H., Gao, H. J., He, J. N., Liu, N., … Huang, Y. F. (2016). Conservation genetics in Chinese sheep: diversity of fourteen indigenous sheep (Ovis aries) using microsatellite markers. Ecol Evol, 6, 810–817. https://doi.org/10.1002/ece3.1891

Gutiérrez-Gil, B., Uzun, M., Arranz, J. J., San Primitivo, F., Yildiz, S., Cenesiz, M., & Bayón, Y. (2007). Genetic diversity in Turkish sheep. Acta Agriculturae Scandinavica, Section A — Animal Science, 56(1), 1–7. https://doi.org/10.1080/09064700600641681

Hecker, K. H. & Roux, K. H. (1996). High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques, 20, 478–485. https://doi.org/10.2144/19962003478

Herold, P., Roessler, R., Willam, A., Momm, H. & Valle Zárate, A., (2012). Breeding and supply chain systems incorporating local pig breeds for small–scale pig producers in Northwest Vietnam. Livest. Prod. Sci., 129, 63–72. https://doi.org/10.1016/j.livsci.2010.01.004

Hoda, A. & Marsan, P. A. (2012). Genetic Characterization of Albanian Sheep Breeds by Microsatellite Markers. In M. Caliskan (Ed.), Analysis of Genetic Variation in Animals. London: IntechOpen. https://doi.org/10.5772/34554

Karaca, O., Arık, İ. Z., Biçer, O., Cemal, İ., Yılmaz, O. & Ulutaş, Z., (2009). Production systems in Turkey’s sheep husbandry and strategic suggestions. Türkiye Ulusal Koyunculuk Kongresi, 12–13 February, Izmir – Turkey, 55–62.

Kiraz, S., Akay, N., Vural, M. E., Karataş, A. & Koncagül, S. (2014). Phylogenetic relationships based on mitochondrial DNA haplogroups between Güney Karaman and some local sheep breeds. International Participated Small Ruminant Congress: 372. Konya.

Kırıkçı, K., Çam, M. A. & Mercan, L., (2018). Genetic Diversity of the Karayaka Sheep Breed in Samsun. Turkey Scholars Bulletin (Veterinary Science), 680–684.

Koban, E. (2004). Genetic diversity of native and crossbreed sheep breeds in Anatolia (PhD thesis, Dept. of biology). Çankaya Ankara: School of natural and applied sciences of Middle East Technical University.

Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour., 15(5), 1179–1191. https://doi.org/10.1111/1755-0998.12387

Langella, O. (1999). Populations (Version 1.2.32) [Population genetic software]. Retrieved from http://bioinformatics.org/~tryphon/populations/

Loukovitis, D., Siasiou, A., Mitsopoulos, I., Lymberopoulos, A. G., Laga, V., & Chatziplis, D. (2016). Genetic diversity of Greek sheep breeds and transhumant populations utilizing microsatellite markers. Small Ruminant Research, 136, 238–242. https://doi.org/10.1016/j.smallrumres.2016.02.008

Marshall, T. C. (2006). Cervus. (Version 3.0) [Cervus is a computer program for the assignment of parents to their offspring using genetic markers. Cervus, a Windows package for parentage analysis using a likelihood approach]. Retrieved from http://www.fieldgenetics.com

Miller, S. A., Dykes, D. D. & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16, 1215. https://doi.org/10.1093/nar/16.3.1215

Montgomery, G. W. & Sise, J. A., (1990). Extraction of DNA from Sheep white blood-cells. New Zeal J Agr Res, 33, 437–441. https://doi.org/10.1080/00288233.1990.10428440

Moulla, F. & El-Bouyahiaoui, R. (2015). Populations ovines locales algériennes de la kabylie : Ressources génétiques animales méconnues et en danger d’extinction, In Workshop National : Valorisation des races locales ovines et caprines à faibles effectifs « Un réservoir de diversité génétique pour le développement local », 02–03 March, INRAA, Alger.

Naqvi, A. N., Mahmood, S., Vahidi, S. M. F., Abbas, S. M., Utsunomiya, Y. T., Garcia, J. F., & Periasamy, K. (2017). Assessment of genetic diversity and structure of major sheep breeds from Pakistan. Small Ruminant Research, 148, 72–79. https://doi.org/10.1016/j.smallrumres.2016.12.032

Nei, M., Tajima, F. & Tateno, Y. (1983). Accuracy of Estimated Phylogenetic Trees from Molecular-Data. 2. Gene-Frequency Data. Journal of Molecular Evolution 19, 153–170. https://doi.org/10.1007/BF02300753

Öner, Y., Üstüner, H., Orman, A., Yılmaz, O., & Yılmaz, A. (2014). Genetic diversity of Kıvırcık sheep breed reared in different regions and their relationship to other sheep breeds in Turkey. Italian Journal of Animal Science, 13, 588–593. https://doi.org/10.4081/ijas.2014.3382

Paetkau, D., & Strobeck, C. (1995). The molecular basis and evolutionary history of a microsatellite null allele in bears. Molecular Ecology, 4(4), 519–520. https://doi.org/10.1111/j.1365-294X.1995.tb00248.x

Peakall, R., & Smouse P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

Rambout, A., (2006). FigTree (Version 1.4.2.) [Computer software]. Retrieved from http://tree.bio.ed.ac.uk/

Ryder, M. L., (1983). Sheep and man. London: Duckworth.

Sassi-Zaidy, Y. B., Maretto, F., Charfi-Cheikhrouha, F., Mohamed-Brahmi, A., & Cassandro, M. (2016). Contribution of microsatellites markers in the clarification of the origin, genetic risk factors, and implications for conservation of Tunisian native sheep breeds. Genetics and Molecular Research, 15(1). https://doi.org/10.4238/gmr.15017059

Sezenler, T., & Özder, M. (2009). Türkiye’de merinoslaştırma çalışmaları. Hasad Hayvancılık Dergisi, 25, 34–41 (in Turkish).

TUIK. (2018). Türkiye İstatistik Kurumu Hayvancılık istatistikleri. Retrieved from http://tuikapp.tuik.gov.tr

Yalcın, B. C. (1986). Sheep and goats in Turkey. (FAO Animal Production and Health Paper No. 60). Retrieved from http://www.fao.org/3/ah224e/AH224E00.htm

Yilmaz, M., Altin, T., Karaca, O., Cemal, I., Bardakcioglu, H. E., Yilmaz, O., & Taskin, T. (2011). Effect of body condition score at mating on the reproductive performance of Kivircik sheep under an extensive production system. Trop Anim Health Prod. 43, 1555–1560. https://doi.org/10.1007/s11250-011-9841-1

Yilmaz, O., Cemal, I., & Karaca O. (2014). Genetic diversity in nine native Turkish sheep breeds based on microsatellite analysis. Anim Genet, 45, 604–608. https://doi.org/10.1111/age.12173

Yilmaz, O., Cemal, I., Karaca, O., Ata, N., Sevim, S., & Ozturk, M. (2013). Genetic diversity of Karya and Çine Çapari sheep. Scientific Papers Series D Animal Science, 56: 31–35.

Yılmaz, O., & Karaca, O. (2012). Paternity analysis with microsatellite markers in Karya sheep. Kafas Univ Vet Fak Derg, 18, 807–813 (in Turkish with abstract in English).

Yılmaz, O., Sezenler, T., Sevim, S., Cemal, İ., Karaca, O., Yaman, Y., & Karadağ, O. (2015). Genetic relationships among four Turkish sheep breeds using microsatellites. Turkish Journal of Veterinary and Animal Sciences, 1411(46), 576–582. https://doi.org/10.3906/vet-1411-46

Downloads

Published

18. 02. 2020

Issue

Section

Animal Science section

How to Cite

AMEUR AMEUR, A., YILMAZ, O., ATA, N., CEMAL, I., & GAOUAR, S. B. S. (2020). Assessment of genetic diversity of Turkish and Algerian native sheep breeds. Acta Agriculturae Slovenica, 115(1), 5–14. https://doi.org/10.14720/aas.2020.115.1.1229

Most read articles by the same author(s)