Impact of dust accumulation on yield and yield components of soybean
DOI:
https://doi.org/10.14720/aas.2020.116.1.1719Keywords:
peroxidase, superoxide dismutase, stomatal conductanceAbstract
This study aimed to characterize if dust sprayed on soybean foliage impacts its yield and yield component characteristics. In 2017 and 2018, soybean [Glycine max (L.) Merr.] was planted using a factorial randomized complete block design with three replicates. Plants were sprayed with a 20 g m-2 of dust at four stages of the growth cycle, including third-node, the beginning of flowering, the beginning of podding, and the beginning of seed formation. Dust spraying was then continued twice weekly until the late full seed stage. Plant measurements included yield, yield components, stomatal conductance, peroxidase, and superoxide dismutase antioxidant enzymes activities. Results showed that depending on the time of application, the dust coverage created a range of yield loss in soybeans, most likely due to a reduction in stomatal conductance, grains plant-1 and 100-seed mass. Therefore, soybean fields that are regularly exposed to dust might be subjected to reduced yield.
References
Abdullaev, S. F., & Sokolik, I. N. (2020). Assessment of the influences of dust storms on cotton production in Tajikistan. In G. Gutman, J. Chen, G. M. Henebry, & M. Kappas (Eds.), Landscape Dynamics of Drylands across Greater Central Asia: People, Societies and Ecosystems (pp. 87-105). Springer International Publishing. https://doi.org/10.1007/978-3-030-30742-4_6
Babu, P. H., Rao, K. N., Jayalalitha, K., & Ali, M. A. (2018). Assessment of different dust pollutants effect on total chlorophyll content, transpiration rate and yield of blackgram (Phaseolus mungo L.). International Journal of Current Microbiology and Applied Sciences, 7(4), 2890-2896. https://doi.org/10.20546/ijcmas.2018.704.329
Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
Borka, G. (1981). Effect of cement kiln dust on maize plant. Acta Agronomica Hungarica, 30, 289-295.
Chaurasia, S., Karwariya, A., & Gupta, A. D. (2014). Impact of cement industry pollution on morphological attributes of wheat (Triticum Species) Kodinar Gujarat, India. Journal of Environmental Science, Toxicology and Food Technology, 8(7), 84-89. https://doi.org/10.9790/2402-08728489
Doabi, S. A., Afyuni, M., & Karami, M. (2017). Multivariate statistical analysis of heavy metals contamination in atmospheric dust of Kermanshah province, western Iran, during the spring and summer 2013. Journal of Geochemical Exploration, 180, 61-70. https://doi.org/10.1016/j.gexplo.2017.06.007
Drack, J. M. E., & Vázquez, D. P. (2018). Morphological response of a cactus to cement dust pollution. Ecotoxicology and Environmental Safety, 148, 571-577. https://doi.org/10.1016/j.ecoenv.2017.10.046
Erdal, S., & Demirtas, A. (2010). Effects of cement flue dust from a cement factory on stress parameters and diversity of aquatic plants. Toxicology and Industrial Health, 26(6), 339-343. https://doi.org/10.1177/0748233710369235
FeleKari, H., Ghobadi, M. E., Ghobadi, M., Jalali-Honarmand, S., & Saeidi, M. (2017). Effect of dust deposition on yield and yield components of chickpea (Cicer arietinum L.) under rain fed and supplemental irrigation conditions in Kermanshah. Journal of Agroecology, 9(2), 535-544. https://doi.org/10.22067/jag.v9i2.54549
Glotter, M., & Elliott, J. (2016). Simulating US agriculture in a modern dust bowl drought. Nature Plants, 3(1), 16193. https://doi.org/10.1038/nplants.2016.193
Gnoinsky, A., Hargiss, C. L. M., Prischmann-Voldseth, D., & DeSutter, T. (2019). Road dust fails to impact soybean physiology and production. Agronomy Journal, 111(4), 1760-1769. https://doi.org/10.2134/agronj2018.10.0640
Hatami, Z., Rezvani Moghaddam, P., Rashki, A., Mahallati, M. N., & Habibi Khaniani, B. (2018). Effects of desert dust on yield and yield components of cowpea (Vigna unguiculata L.). Archives of Agronomy and Soil Science, 64(10), 1446-1458. https://doi.org/10.1080/03650340.2018.1440081
Hirano, T., Kiyota, M., & Aiga, I. (1995). Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environmental Pollution, 89(3), 255-261. https://doi.org/10.1016/0269-7491(94)00075-O
Hojati, S., Khademi, H., Faz Cano, A., & Landi, A. (2012). Characteristics of dust deposited along a transect between central Iran and the Zagros Mountains. CATENA, 88(1), 27-36. https://doi.org/10.1016/j.catena.2011.09.002
Karami, L., Ghaderi, N., & Javadi, T. (2017). Morphological and physiological responses of grapevine (Vitis vinifera L.) to drought stress and dust pollution. Folia Horticulturae, 29(2), 231–240. https://doi.org/10.1515/fhort-2017-0021
Keller, T. (1974). The use of peroxidase activity for monitoring and mapping air pollution areas. European Journal of Forest Pathology, 4(1), 11-19. https://doi.org/10.1111/j.1439-0329.1974.tb00407.x
Lokuruka, M. (2011). Effects of processing on soybean nutrients and potential impact on consumer health: An overview. African Journal of Food, Agriculture, Nutrition and Development, 11(4), 5000-5017. https://doi.org/10.4314/ajfand.v11i4.69170
MacAdam, J. W., Sharp, R. E., & Nelson, C. J. (1992). Peroxidase Activity in the Leaf Elongation Zone of Tall Fescue. II. Spatial Distribution of Apoplastic Peroxidase Activity in Genotypes Differing in Length of the Elongation Zone, 99(3), 879-885. https://doi.org/10.1104/pp.99.3.879
Pilon, M., Abdel-Ghany, S. E., Cohu, C. M., Gogolin, K. A., & Ye, H. (2006). Copper cofactor delivery in plant cells. Current Opinion in Plant Biology, 9(3), 256-263. https://doi.org/10.1016/j.pbi.2006.03.007
Pirsaheb, M., Zinatizadeh, A., Khosravi, T., Atafar, Z., & Dezfulinezhad, S. (2014). Natural airborne dust and heavy metals: a case study for kermanshah, Western Iran (2005-2011). Iranian Journal of Public Health, 43(4), 460-470.
Rahman, J. K. (2015). Response of two crop plants to dust deposition. ZANCO Journal of Pure and Applied Sciences, 27(2), 1-6. https://doi.org/10.21271/zjpas.v27i2.144
Sarkar, R. K., Banerjee, A., & Mukherji, S. (1986). Acceleration of peroxidase and catalase activities in leaves of wild dicotyledonous plants, as an indication of automobile exhaust pollution. Environmental Pollution Series A, Ecological and Biological, 42(4), 289-295. https://doi.org/10.1016/0143-1471(86)90013-9
Sett, R. (2017). Responses in plants exposed to dust pollution. Horticulture International Journal, 1(1). https://doi.org/10.15406/hij.2017.01.00010
Shahsavani, A., Yarahmadi, M., Jafarzade Haghighifard, N., Naimabadie, A., Mahmoudian, M. H., Saki, … Naddafi, K. (2011). Dust storms: Environmental and health impacts [Review Article]. Journal of North Khorasan University of Medical Sciences, 2(4), 45-56. https://doi.org/10.29252/jnkums.2.4.45
Sharma, S. B., & Kumar, B. (2015). Effects of stone crusher dust pollution on growth performance and yield status of gram (Cicer arietinum L.). International Journal of Current Microbiology and Applied Sciences, 4(3), 971-979.
Sharma, S. B., & Kumar, B. (2016). Effects of stone crusher dust pollution on growth performance and yield status of rice (Oryza sativa. L). International Journal of Current Microbiology and Applied Sciences, 5(5), 796-806. https://doi.org/10.20546/ijcmas.2016.505.080
Singh, N., Shrivastava, R., & Mishra, A. (2018). Influence of leaf dust deposition on chlorophyll content of Bougainvillea spectabilis and Lanatana camara growing in vicinity of jaypee cement plant, rewa (mp). International Journal of Information Research and Review, 5(9), 5685-5688.
Siqueira-Silva, A. I., Pereira, E. G., Lemos-Filho, J. P. d., Modolo, L. V., & Paiva, E. A. S. (2017). Physiological traits and antioxidant metabolism of leaves of tropical woody species challenged with cement dust. Ecotoxicology and Environmental Safety, 144, 307-314. https://doi.org/10.1016/j.ecoenv.2017.06.041
Siqueira-Silva, A. I., Pereira, E. G., Modolo, L. V., Lemos-Filho, J. P., & Paiva, E. A. S. (2016). Impact of cement dust pollution on Cedrela fissilis Vell. (Meliaceae): A potential bioindicator species. Chemosphere, 158, 56-65. https://doi.org/10.1016/j.chemosphere.2016.05.047
Tomar, D., Khan, A. A., & Ahmad, G. (2018). Response of potato plants to foliar application of cement dust. Tropical Plant Research, 5(1), 41-45. https://doi.org/10.22271/tpr.2018.v5.i1.007
Tyagi, S., Shumayla, Singh, S. P., & Upadhyay, S. K. (2019). Role of superoxide dismutases (SODs) in stress tolerance in plants. In: S. P. Singh, S. K. Upadhyay, A. Pandey, & S. Kumar (Eds.), Molecular Approaches in Plant Biology and Environmental Challenges (pp. 51-77). Springer Singapore. https://doi.org/10.1007/978-981-15-0690-1_3
Walia, K., Aggarwal, R., & Bhardwaj, S. (2019). Leaf dust accumulation and its relationship with biochemical parameters of different plant species growing along national highway-22, India. International Journal of Chemical Studies, 7(1), 1386-1390.
Zhang, X., Yin, H., Chen, S., He, J., & Guo, S. (2014). Changes in antioxidant enzyme activity and transcript levels of related genes in Limonium sinense Kuntze seedlings under NaCl stress. Journal of Chemistry, 2014, 749047. https://doi.org/10.1155/2014/749047
Zia-Khan, S., Spreer, W., Pengnian, Y., Zhao, X., Othmanli, H., He, X., & Müller, J. (2015). Effect of Dust deposition on stomatal conductance and leaf temperature of cotton in Northwest China. Water, 7(1), 116-131. https://doi.org/10.3390/w7010116
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Sharife HABIBPOUR, Majid AMINI DAHAGHI, Mohammad-Eghbal GHOBADI, Alaeddin KORDENAEEJ
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.