Investigation of gene expression diversity in Hypericum spp. before and after flowering under different nitrogen fertilization levels

Authors

  • Mahmood YASAMAN Islamic Azad University, Faculty of Biologica Sciences, North Tehran Branch, Department of Biology, Tehran, Iran
  • Hossein ABBASPOUR Islamic Azad University, Faculty of Biological Sciences, North Tehran Branch, Department of Biology, Tehran, Iran
  • Maryam PEYVANDI Islamic Azad University, Faculty of Biological Sciences, North Tehran Branch, Department of Biology, Tehran, Iran
  • Mohammad Reza NAGHAVI Agronomy and Plant Breeding Department, Agricultural & Natural Resources College, University of Tehran, Karaj, Iran

DOI:

https://doi.org/10.14720/aas.2020.116.1.1593

Keywords:

Hypericum, hypericin, hyp-1 HpPKS1, HpPKS2, transcriptional diversity

Abstract

The traditional medicinal herb, Hypericum perforatum L. has been popular for its pharmaceutical and coloring wealth since the ancient era. A secondary metabolite from the group of naphthodianthrones in Hypericum spp. named hypericin is responsible for the antidepression, anticancer, and antiviral characteristics of this herb. It has been found that several genes are involved in the biosynthesis pathway of hypericin. The hyp-1 gene is participating in this biosynthesis path through the conversion of emodin to hypericin. The naphthodianthrones (hypericin and pseudohypericin) in Hypericum are synthesized through the polyketide pathway. In the plants, the enzyme complexes named polyketide synthase (PKS) catalyzes the reactions of polyketide pathways. The genes HpPKS1 and HpPKS2 are encoding PKS enzyme complexes. In this research, the relative expression of hyp-1, HpPKS1, and HpPKS2 genes was compared in root and leaves of Hypericum perforatum and H. androsaemum L., before and after flowering under urea fertilization at 24, 48 and 72 hours after irrigation. The highest expression level of all three genes was observed after flowering in the samples of H. perforatum that were fertilized 72 hours after irrigation by 1 g l-1 urea (hyp-1 in roots; HpPKS1 and HpPKS2 in leaves). The relative expression of hyp-1 in the root was greater than in the leaves, but HpPKS1 and HpPKS2 expression in leaves was higher than in root. The relative expression of all three genes in H. perforatum was higher than in H. androsaemum. By increasing the interval between urea fertilization and irrigation, the relative expression of genes had an increasing trend, also by increasing the amount of urea fertilizer, relative gene expression was increased.

References

Afrin, S., Huang, J. J., & Luo, Z. Y. (2015). JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Science Bulletin, 60(12), 1062-1072. https://doi.org/10.1007/s11434-015-0813-0

Agostinis, P., Vantieghem, A., Merlevede, W., & de Witte, P. A. (2002). Hypericin in cancer treatment: more light on the way. The international journal of biochemistry & cell biology, 34(3), 221-241. http://dx.doi.org/10.1016/S1357-2725(01)00126-1

Ayan, A. K., & Cirak, C. (2008). Variation of hypericins in Hypericum triquetrifolium Turra growing in different locations of Turkey during plant growth. Natural product research, 22(18), 1597-1604. https://doi.org/10.1080/14786410701838213

Azeez, H. A., Ameen, A. H., & Faqe, S. A. (2017). Variation in production of of Hypericum triqutrifoliu developmental stages. Journal of zankoy sulaimani-A, 19(2), 29-36. https://doi.org/10.17656/jzs.10608

Azizi, M., & Dias, A. (2004, September). Nitrogen and phosphorus fertilizers affect flavonoids contents of St. John’s wort (Hypericum perforatum L.). In Proc. 4th Int. Iran & Russia Conf. Shahrkurd, Iran (pp. 8-10). Retrieved from: http://iirc.narod.ru/4conference/Fullpaper/20003.pdf

Bais, H. P., Vepachedu, R., Lawrence, C. B., Stermitz, F. R., & Vivanco, J. M. (2003). Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). Journal of Biological Chemistry, 278(34), 32413-32422. http://dx.doi.org/ 10.1074/jbc.M301681200

Birt, D. F., Widrlechner, M. P., Hammer, K. D., Hillwig, M. L., Wei, J., Kraus, G. A., ... & Wiemer, D. F. (2009). Hypericum in infection: Identification of anti-viral and anti-inflammatory constituents. Pharmaceutical biology, 47(8), 774-782. http://dx.doi.org/10.1080/13880200902988645

Briskin, D. P., & Gawienowski, M. C. (2001). Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiology and Biochemistry, 39(12), 1075-1081. http://dx.doi.org/10.1016/S0981-9428(01)01326-2

Bruni, R., & Sacchetti, G. (2009). Factors affecting polyphenol biosynthesis in wild and field grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules, 14(2), 682-725. http://dx.doi.org/10.3390/molecules14020682

Büter, K. B., & Büter, B. (2002). Ontogenetic variation regarding hypericin and hyperforin levels in four accessions of Hypericum perforatum L. Journal of Herbs, Spices & Medicinal Plants, 9(2-3), 95-100. https://doi.org/10.1300/J044v09n02_14

Butterweck, V. (2003). Mechanism of action of St John’s wort in depression. CNS drugs, 17(8), 539-562. http://dx.doi.org/10.2165/00023210-200317080-00001

Cui, X. H., Murthy, H. N., Wu, C. H., & Paek, K. Y. (2010). Adventitious root suspension cultures of Hypericum perforatum: effect of nitrogen source on production of biomass and secondary metabolites. In Vitro Cellular & Developmental Biology-Plant, 46(5), 437-444. http://doi.org/10.1007/s11627-010-9310-y

Daneshian, A., Gurbuz, B., Cosge, B., & Ipek, A. (2009). Chemical Components of Essential Oils from Basil (Ocimum basilicum L.) Grown at Different Nitrogen Levels. International Journal of Natural & Engineering Sciences, 3(3). http://www.ijnes.org/index.php/ijnes/article/view/505/475

Deepak, S. A., Kottapalli, K. R., Rakwal, R., Oros, G., Rangappa, K. S., Iwahashi, H., ... & Agrawal, G. K. (2007). Real-time PCR: revolutionizing detection and expression analysis of genes. Current genomics, 8(4), 234-251. http://doi.org/10.2174/138920207781386960

Duke, J. A. (2002). Handbook of medicinal herbs. CRC press. Inc. Boca Raton, Florida.

Duppong, L. M., Delate, K., Liebman, M., Horton, R., Romero, F., Kraus, G., ... & Chowdbury, P. K. (2004). The effect of natural mulches on crop performance, weed suppression and biochemical constituents of catnip and St. John’s wort. Crop science, 44(3), 861-869. http://doi.org/10.2135/cropsci2004.0861

Falk, H. (1999). From the photosensitizer hypericin to the photoreceptor stentorin—the chemistry of phenanthroperylene quinones. Angewandte Chemie International Edition, 38(21), 3116-3136. https://doi.org/10.1002/(SICI)1521-3773(19991102)38:21<3116::AID-ANIE3116>3.0.CO;2-S

Jabbari, R., Dehaghi, M. A., Sanavi, A. M. M., & Agahi, K. (2011). Nitrogen and iron fertilization methods affecting essential oil and chemical composition of thyme (Thymus vulgaris L.) medical plant. Advances in Environmental Biology, 433-439. http://www.aensiweb.com/old/aeb/2011/433-438.pdf

Jendželovská, Z., Jendželovský, R., Kuchárová, B., & Fedoročko, P. (2016). Hypericin in the light and in the dark: two sides of the same coin. Frontiers in plant science, 7, 560. http://dx.doi.org/10.3389/fpls.2016.00560

Karioti, A., & Bilia, A. R. (2010). Hypericins as potential leads for new therapeutics. International journal of molecular sciences, 11(2), 562-594. http://dx.doi.org/10.3390/ijms11020562

Karppinen K (2010) Biosynthesis of hypericins and hyperforins in Hypericum perforatum (St. John’s wort)-precursors and genes involved. Academic dissertation submitted to Faculty of Science, University of Oulu, Oulu. ISBN 978-951-42-6310-1. http://jultika.oulu.fi/Record/isbn978-951-42-6310-1

Khosh-Khui, M., Shekafandeh, A., & Azarakhsh, H. (1984). Micropropagation of myrtle. Scientia horticulturae, 22(1-2), 139-146. https://doi.org/10.1016/0304-4238(84)90094-3

Košuth, J., Katkovčinová, Z., Olexová, P., & Čellárová, E. (2007). Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant cell reports, 26(2), 211-217. http://dx.doi.org/10.1007/s00299-006-0240-4

Kubin, A., Wierrani, F., Burner, U., Alth, G., & Grunberger, W. (2005). Hypericin-the facts about a controversial agent. Current pharmaceutical design, 11(2), 233-253. http://dx.doi.org/10.2174/1381612053382287

Lazzara, S., Militello, M., Carrubba, A., Napoli, E., & Saia, S. (2017). Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate. Mycorrhiza, 27(4), 345-354. http://dx.doi.org/10.1007/s00572-016-0756-6

Lazzara, S., Napoli, E., & Carrubba, A. (2015). Hypericum spp.: a resource from wild Mediterranean flora for the treatment of mild depression. Bioactive phytochemicals—perspectives for modern medicine, 3, 337-354.

Liu, J. J., & Ekramoddoullah, A. K. (2006). The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68(1-3), 3-13. http://doi.org/10.1016/j.pmpp.2006.06.004

Michalska, K., Fernandes, H., Sikorski, M., & Jaskolski, M. (2010). Crystal structure of Hyp-1, a St. John’s wort protein implicated in the biosynthesis of hypericin. Journal of structural biology, 169(2), 161-171. http://doi.org/10.1016/j.jsb.2009.10.008

Miskovsky, P. (2002). Hypericin-a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules. Current drug targets, 3(1), 55-84. http://dx.doi.org/10.2174/1389450023348091

Murthy, H. N., Kim, Y. S., Park, S. Y., & Paek, K. Y. (2014a). Hypericins: biotechnological production from cell and organ cultures. Applied microbiology and biotechnology, 98(22), 9187-9198. http://dx.doi.org/10.1007/s00253-014-6119-3

Murthy, H. N., Lee, E. J., & Paek, K. Y. (2014b). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture (PCTOC), 118(1), 1-16. http://dx.doi.org/10.1007/s11240-014-0467-7

Nürk, N. M., Madriñán, S., Carine, M. A., Chase, M. W., & Blattner, F. R. (2013). Molecular phylogenetics and morphological evolution of St. John’s wort (Hypericum; Hypericaceae). Molecular Phylogenetics and Evolution, 66(1), 1-16. http://doi.org/10.1016/j.ympev.2012.08.022

Nurzyńska-Wierdak, R. (2013). Does mineral fertilization modify essential oil content and chemical composition in medicinal plants? Acta Sci Pol Hortorum Cultus, 12(5), 3-16. http://www.acta.media.pl/pl/full/7/2013/000070201300012000050000300016.pdf

Onelli, E., Rivetta, A., Giorgi, A., Bignami, M., Cocucci, M., & Patrignani, G. (2002). Ultrastructural studies on the developing secretory nodules of Hypericum perforatum. Flora-Morphology, Distribution, Functional Ecology of Plants, 197(2), 92-102. http://doi.org/10.1078/0367-2530-00019

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), e45-e45. http://doi.org/10.1093/nar/29.9.e45

Pinto, M. P., Ribeiro, A., Regalado, A. P., Rodrigues-Pousada, C., & Ricardo, C. P. P. (2005). Expression of Lupinus albus PR-10 proteins during root and leaf development. Biologia plantarum, 49(2), 187-193. http://dx.doi.org/10.1007/s10535-005-7193-2

Politycka, B., & Golcz, A. (2004). Content of chloroplast pigments and anthocyanins in the leaves of Ocimum basilicum L. depending on nitrogen doses. Folia horticulturae, 16(1), 23-29. http://www.ptno.ogr.ar.krakow.pl/Wydawn/FoliaHorticulturae/Spisy/FH2004/PDF16012004/fh1601p03.pdf

Radauer, C., Lackner, P., & Breiteneder, H. (2008). The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC evolutionary biology, 8(1), 286. http://doi.org/10.1186/1471-2148-8-286

Rahnavrd, A. (2017). Genetic and biochemical diversity of Hypericum perforatum L. Grown in the caspian climate of Iran. Applied ecology and environmental research, 15(1), 665–675. http://dx.doi.org/10.15666/aeer/1501_665675

Ruhfel, B. R., Stevens, P. F., & Davis, C. C. (2013). Combined morphological and molecular phylogeny of the clusioid clade (Malpighiales) and the placement of the ancient rosid macrofossil Paleoclusia. International Journal of Plant Sciences, 174(6), 910-936. http://dx.doi.org/10.1086/670668

Russo, E., Scicchitano, F., Whalley, B. J., Mazzitello, C., Ciriaco, M., Esposito, S., ... & Mammì, M. (2014). Hypericum perforatum: pharmacokinetic, mechanism of action, tolerability, and clinical drug–drug interactions. Phytotherapy research, 28(5), 643-655. http://doi.org/10.1002/ptr.5050

Samuelsson, G., & Bohlin, L. (2017). Drugs of natural origin: a treatise of pharmacognosy (No. Ed. 7). CRC Press Inc.

Silva, B. A., Ferreres, F., Malva, J. O., & Dias, A. C. (2005). Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food chemistry, 90(1-2), 157-167. http://doi.org/10.1016/j.foodchem.2004.03.049

Sirvent, T., & Gibson, D. (2002). Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiological and Molecular Plant Pathology, 60(6), 311-320. http://doi.org/10.1006/pmpp.2002.0410

Sirvent, T. M., Krasnoff, S. B., & Gibson, D. M. (2003). Induction of hypericins and hyperforins in Hypericum perforatum in response to damage by herbivores. Journal of chemical ecology, 29(12), 2667-2681. http://dx.doi.org/10.1023/B:JOEC.0000008011.77213.64

Sun, P., Kang, T., Xing, H., Zhang, Z., Yang, D., Zhang, J., ... & Li, M. (2019). Phytochemical Changes in Aerial Parts of Hypericum perforatum at Different Harvest Stages. Records of Natural Products, 13(1). http://dx.doi.org/10.25135/rnp.77.18.04.267

Vattikuti, U. M., & Ciddi, V. (2005). An overview on Hypericum perforatum L. Natural Product Radiance, 4(5), 368-381. https://pdfs.semanticscholar.org/2a92/04ef4e20712d0613d3fdfee5c5bfec002362.pdf

Vom Endt, D., Kijne, J. W., & Memelink, J. (2002). Transcription factors controlling plant secondary metabolism: what regulates the regulators?. Phytochemistry, 61(2), 107-114. http://doi.org/10.1016/S0031-9422(02)00185-1

Zhang, X., Jin, B., Zheng, W., Zhang, N., Liu, X., Bing, T., ... & Shangguan, D. (2016). Interaction of hypericin with guanine-rich DNA: Preferential binding to parallel G-Quadruplexes. Dyes and Pigments, 132, 405-411. http://doi.org/10.1016/j.dyepig.2016.05.009

Zhang, Y., Shang, K., Wu, X., Song, S., Li, Z., Pei, Z., & Pei, Y. (2018). Highly efficient green synthesis and photodynamic therapeutic study of hypericin and its derivatives. RSC advances, 8(39), 21786-21792. http://dx.doi.org/10.1039/c8ra03732a

Zheljazkov, V. D., Cantrell, C. L., Astatkie, T., & Cannon, J. B. (2011). Lemongrass productivity, oil content, and composition as a function of nitrogen, sulfur, and harvest time. Agronomy Journal, 103(3), 805-812. http://doi.org/10.2134/agronj2010.0446

Zobayed, S. M. A., Afreen, F., Goto, E., & Kozai, T. (2006). Plant–environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Annals of Botany, 98(4), 793-804. http://doi.org/10.1093/aob/mcl169

Downloads

Published

25. 09. 2020

Issue

Section

Agronomy section

How to Cite

YASAMAN, M., ABBASPOUR, H., PEYVANDI, M., & NAGHAVI, M. R. (2020). Investigation of gene expression diversity in Hypericum spp. before and after flowering under different nitrogen fertilization levels. Acta Agriculturae Slovenica, 116(1), 83–92. https://doi.org/10.14720/aas.2020.116.1.1593

Similar Articles

1-10 of 230

You may also start an advanced similarity search for this article.