Correlation and path coefficient analysis among agro-morphological and biochemical traits of okra [Abelmoschus esculentus (L.) Moench] genotypes in Ethiopia

Authors

  • Jemal MOHAMMED Crop and Horticulture biodiversity directorate, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
  • Wassu MOHAMMED School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
  • Eleni SHIFERAW Crop and Horticulture biodiversity directorate, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia

DOI:

https://doi.org/10.14720/aas.2020.115.2.1411

Keywords:

correlation, genotypic correlation, path analysis, phenotypic correlation

Abstract

Thirty six okra genotypes were evaluated for different agro-morphological and biochemical traits at Melkassa Agricultural Research Center, Ethiopia during 2018 main season using 6 x 6 simple lattice design. The objectives were to assess the correlation of agro-morphological and biochemical traits with fruit yield and to partition the correlation in to direct and indirect effects through path analysis. The genotypic correlation was positive and significant for fruit yield per hectare with stem diameter, plant height, leaf length, leaf width, peduncle length, fruit length, fresh fruit mass, hundred seed mass, seed yield per hectare and ash content. The phenotypic correlation was positive and significant for fruit yield per hectare with stem diameter, plant height, number of branches, leaf length, leaf width, peduncle length, fruit length, fresh fruit mass, number of fruits per plant, hundred seed mass, seed yield per hectare, ash, fat and protein content. Path coefficient analysis indicated fresh fruit mass and seed yield per hectare had positive direct effects on fruit yield per hectare at phenotypic and genotypic levels. These traits also exerted high to low positive indirect effects through other traits on fruit yield at genotypic and phenotypic level. In conclusion, this study showed the presence of association of traits with fruit yield indicating that the prime importance of these traits while selecting higher yield okra genotypes.

References

Ahiakpa, J.K. (2012). Characterization of twenty-nine (29) accessions of okra [Abelmoschus Spp(L.) Moench] in Ghana. Master of Philosophy, University of Ghana, Ghana.

Akinyele, B. O., & Osekita, O. S. (2006). Correlation and path coefficient analyses of seed yield attributes in okra (Abelmoschus esculentus (L.) Moench). African Journal of Biotechnology, 5(14), 1330-1336.

Anwar, F., Rashid, U., Mahmood, Z., Iqbal, T., & Sherazi, T. H. (2011). Inter-varietal variation in the composition of okra (Hibiscus esculentus L.) seed oil. Pakistan Journal of Botany, 43(1), 271-280.

AOAC (Association of Official Analytical Chemists). 2000. Official methods of analysis (vol.2 17th edition) of AOAC International. Washington, DC, USA. Official methods 925.09, 923.03, 962.09, 4.5.01 and.6.25.

Balai, T. C., Maurya, I. B., Verma, S., & Kumar, N. (2014). Correlation and path analysis in genotypes of okra [Abelmoschus esculentus (L.) Moench]. The Bioscan, 9(2), 799-802.

Bisht, I. S., Mahajan, R. K., & Rana, R. S. (1995). Genetic diversity in South Asian okra (Abelmoschus esculentus) germplasm collection. Annals of applied biology, 126(3), 539-550. https://doi.org/10.1111/j.1744-7348.1995.tb05388.x

Das, S., Chattopadhyay, A., Chattopadhyay, S. B., Dutta, S., & Hazra, P. (2012). Characterization of okra germplasm and their genetic divergence in the gangetic alluvium of eastern India. Vegetos an International Journal of Plant Research, 25(2), 86-94.

Dewey, D. R., & Lu, K. (1959). A Correlation and Path-Coefficient Analysis of Components of Crested Wheatgrass Seed Production 1. Agronomy Journal, 51(9), 515-518. https://doi.org/10.2134/agronj1959.00021962005100090002x

Dhankhar, B. S., & Dhankhar, S. K. (2002). Genetic variability, correlation and path analysis in okra [Abelmoschus esculentus (L.) Moench]. Vegetable Science, 29(1), 63-65.

Ehab. AA. I., Mohamed.Y. A. & Ali M. M. 2013. Genetic behaviour of families selected from some local okra [Abelmoschus esculentus(L.) Moench] populations in Egypt. Plant Breeding Biotechnology, 1(4), 396-405. https://doi.org/10.9787/PBB.2013.1.4.396

Ibrahim, E. A. A., Abed, M. Y., & Moghazy, A. M. (2013). Genetic Behavior of Families Selected from Some Local Okra (Abelmoschus esculentus L. Moench) Populations in Egypt. Plant Breeding and Biotechnology, 1(4), 396-405. https://doi.org/10.9787/PBB.2013.1.4.396

Falconer, D.S. & Mackay, T.F.C. (1996). An introduction to quanitative genetic. Ed, 4.Hall London.

FAOSTAT. 2017. Food and Agricultural Organisation of the United Nations. On-line and Multilingual Database, http://faostat.fao.org/faostat/.

Fozia Yimam. 2018. Genetic diversity and association of seed yield and related traits of Okra [Abelmoschus esculentus (L.) Moench] in Ethiopia. MSc thesis, Haramaya University, Haramaya, Ethiopia.

Gatti, I., Anido, F. L., Vanina, C., Asprelli, P., & Country, E. (2005). Heritability and expected selection response for yield traits in blanched asparagus. Genetics and Molecular Research, 4(1), 67-73.

Johnson, R. A., & Wichern, D. W. (1992). The Bonferroni method of multiple comparisons. Applied Multivariate Statistical Analysis. New York: Prentice-Hall International Inc, 9.

Kumar, S., Dagnoko, S., Haougui, A., Ratnadass, A., Pasternak, N., & Kouame, C. (2010). Okra (Abelmoschus spp.) in West and Central Africa: Potential and progress on its improvement. African Journal of Agricultural Research, 5(25), 3590-3598.

Kumar, S., & Reddy, M. T. (2016). Correlation and path coefficient analysis for yield and its components in okra (Abelmoschus esculentus (L.) Moench). Advances in Agricultural Science, 4(1), 72-83.

Lamont, W.J. (1999). Okra A versatile vegetable crop. HortTechnology, 9(2), 179-184. https://doi.org/10.21273/HORTTECH.9.2.179

Lenka, D., &Misra, B. (1973). Path-coefficient analysis of yield in rice varieties. Indian journal of agricultural sciences, 43(4), 376-379.

MARC (Melkassa Agricultural Research Center). (2008). Ethiopian Institute of Agricultural Research, Center Profile, Melkassa, Ethiopia.

Mihretu Yonas, Weyessa Garedew & Adugna Debela, (2014). Multivariate analysis among Okra [Abelmoschus esculentus (L.) Moench] collection in South Western Ethiopia. Journal of Plant Sciences, 9, 43-50. https://doi.org/10.3923/jps.2014.43.50

Muluken Demelie, Wassu Mohamed & Endale Gebre. (2015). Genetic Diversity of Ethiopian Okra Collections through Multivariate Analysis at Werer, Rift Valley of Ethiopia. The International Journal of Science and Technology, 3(8), 186.

Nwangburuka, C. C., Kehinde, O. B., Ojo, D. K., Denton, O. A., & Popoola, A. R. (2011). Morphological classification of genetic diversity in cultivated okra, Abelmoschus esculentus (L) Moench using principal component analysis (PCA) and single linkage cluster analysis (SLCA). African Journal of Biotechnology, 10 (54), 11165-11172. https://doi.org/10.5897/AJB11.285

Prasath, G., Reddy, K. R., & Saidaiah, P. (2017). Correlation and Path Coefficient Analysis of Fruits Yield and Yield Attributes in Okra [Abelmoschus esculentus (L.) Moench]. International Journal ofCurrent Microbiolial and Applied Science, 6(3), 463-472. https://doi.org/10.20546/ijcmas.2017.603.054

Reddy, M. T., Babu, K. H., Ganesh, M., Begum, H., Reddy, R. S. K., & Babu, J. D. (2013). Exploitation of hybrid vigour for yield and its components in okra [Abelmoschus esculentus (L.) Moench]. American Journal of Agriculture Science and Technology, 1, 1-17. https://doi.org/10.7726/ajast.2013.1001

Robertson, A. (1959). The sampling variance of the genetic correlation coefficient. Biometrics, 15(3): 469-485. https://doi.org/10.2307/2527750

SAS Institute. (2004). SAS /STAT Guide for personal computers, version 9.0 editions. SAS Institute Inc. Cary, NC, USA.

Saitwal, Y. S., Solanke, S. P., Kalalbandi, B. M., Kale, S. A., & Mendhe, S. T. (2011). Study on yield and quality of okra [Abelmoschus esculentus (L.) Moench] hybrids. Asian Journal of Horticulture, 6(1), 11-12.

Sharma, J.R., (1998). Statistical and Biometrical Techniques in Plant Breeding. New Age International (P) Limited Publishers, New Delhi. Pp 432.

Siesmonsma, J.S. (1991). International Crop Network Series. Report of an international workshop on okra genetic resources. IBPGR, Rome. 5, 52-68.

Singh, R.K. and Chaudhary. (1977). Biometrical methods in quantitative genetic analysis. Kalyani Publishers, New Delhi-Ludhiana, India.

Somashekhar, G., Mohankumar, H.D. and Salimath, P.M. (2011). Genetic analysis of association studies in segregating population of okra. Karnataka Journal of Agricultural Science. 24(4), 432-435.

Thakur, S. K., & Sirohi, A. (2009). Correlation and path coefficient analysis in chickpea (Cicer arietinum L.) under different seasons. Legume Research, 32(1), 1-6.

Thirupathi Reddy, M., Hari Babu, K., Ganesh, M., Chandrasekhar Reddy, K., Begum, H., Purushothama Reddy, B. and Narshimulu, G. (2012). Genetic variability analysis for the selection of elite genotypes based on pod yield and quality from the germplasm of okra [Abelmoschus esculentus (L.) Moench]. Journal of Agriculture and Technology, 8(2), 639-655.

Downloads

Published

23. 06. 2020

Issue

Section

Agronomy section

How to Cite

MOHAMMED, J., MOHAMMED, W., & SHIFERAW, E. (2020). Correlation and path coefficient analysis among agro-morphological and biochemical traits of okra [Abelmoschus esculentus (L.) Moench] genotypes in Ethiopia. Acta Agriculturae Slovenica, 115(2), 329–339. https://doi.org/10.14720/aas.2020.115.2.1411

Similar Articles

1-10 of 451

You may also start an advanced similarity search for this article.