Discovery and molecular characterisation of the first ambidensovirus in honey bees

Authors

  • Sabina OTT RUTAR Josef Stefan Institute, Department of Molecular and Biomedical Sciences, Ljubljana, Slovenia
  • Dušan KORDIŠ Josef Stefan Institute, Department of Molecular and Biomedical Sciences, Ljubljana, Slovenia

DOI:

https://doi.org/10.14720/aas.2020.116.2.1832

Keywords:

honey bees, densovirus, genome organisation, molecular characterisation

Abstract

Honey bees play a critical role in global food production as pollinators of numerous crops. Several stressors cause declines in populations of managed and wild bee species, such as habitat degradation, pesticide exposure and pathogens. Viruses act as key stressors and can infect a wide range of species. The majority of honey bee-infecting viruses are RNA viruses of the Picornavirales order. Although some ssDNA viruses are common in insects, such as densoviruses, they have not yet been found in honey bees. Densoviruses were however found in bumblebees and ants. Here, we show that densoviruses are indeed present in the transcriptome of the eastern honey bee (Apis cerana) from southern China. On the basis of non-structural and structural transcripts, we inferred the genome structure of the Apis densovirus. Phylogenetic analysis has shown that this novel Apis densovirus belongs to the Scindoambidensovirus genus in the Densovirinae subfamily. Apis densovirus possesses ambisense genome organisation and encodes three non-structural proteins and a split VP (capsid) protein. The availability of a nearly complete Apis densovirus genome may enable the analysis of its potential pathogenic impact on honey bees. Our findings can thus guide further research into the densoviruses in honey bees and bumblebees.

References

Bailey, L., Ball, B. V., Woods, R. D. (1976). An iridovirus from bees. Journal of General Virology, 31, 459–461. https://doi.org/10.1099/0022-1317-31-3-459

Beaurepaire, A., Piot, N., Doublet, V., Antunez, K., Campbell, E., Chantawannakul, P., ... Chejanovsky, N. (2020). Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects, 11, 239. https://doi.org/10.3390/insects11040239

Bromenshenk, J. J., Henderson, C. B., Wick, C. H., Stanford, M. F., Zulich, A. W., Jabbour, R. E., ... Deshpande, S. V., (2010). Iridovirus and Microsporidian Linked to Honey Bee Colony Decline. PLoS ONE, 5, e13181. https://doi.org/10.1371/journal.pone.0013181

Brutscher, L. M., McMenamin, A. J., Flenniken, M. L. (2016). The buzz about honey bee viruses. PLoS Pathogens, 12, e1005757. https://doi.org/10.1371/journal.ppat.1005757

Chen, Y. P., Siede, R. (2007). Honey bee viruses. Advances in Virus Research, 70, 33–80. https://doi.org/10.1016/S0065-3527(07)70002-7

Cotmore, S. F., Agbandje-McKenna, M., Chiorini, J. A., Mukha, D. V., Pintel, D. J., Qiu, J., ... Soderlund-Venermo, M., (2014). The family Parvoviridae. Archives of Virology, 159, 1239–1247. https://doi.org/10.1007/s00705-013-1914-1

Evans, J. D., Schwarz, R. S. (2011). Bees brought to their knees: microbes affecting honey bee health. Trends in Microbiology, 19, 614–620. https://doi.org/10.1016/j.tim.2011.09.003

Francois, S., Filloux, D., Roumagnac, P., Bigot, D., Gayral, P., Martin, D. P., ... Froissart, R. (2016). Discovery of parvovirus-related sequences in an unexpected broad range of animals. Scientific Reports, 6, 30880. https://doi.org/10.1038/srep30880

Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J., Brown, M. J. (2014). Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature, 506, 364–366. https://doi.org/10.1038/nature12977

Galbraith, D. A., Fuller, Z. L., Ray, A. M., Brockmann, A., Frazier, M., Gikungu, M. W., ... Martinez, J. F. I. (2018). Investigating the viral ecology of global bee communities with high-throughput metagenomics. Scientific Reports, 8, 8879. https://doi.org/10.1038/s41598-018-27164-z

Gauthier, L., Cornman, S., Hartmann, U., Cousserans, F., Evans, J. D., de Miranda, J. R., Neumann, P. (2015). The Apis mellifera filamentous virus genome. Viruses, 7, 3798–3815. https://doi.org/10.3390/v7072798

Gertz, E. M., Yu, Y. K., Agarwala, R., Schäffer, A. A., Altschul, S. F. (2006). Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biology, 4, 41. https://doi.org/10.1186/1741-7007-4-41

Goulson, D., Nicholls, E., Botias, C., Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347, 1255957. https://doi.org/10.1126/science.1255957

Grozinger, C. M., Flenniken, M. L. (2019). Bee viruses: ecology, pathogenicity, and impacts. Annual Review of Entomology, 64, 205–226. https://doi.org/10.1146/annurev-ento-011118-111942

Hartmann, U., Forsgren, E., Charriere, J. D., Neumann, P., Gauthier, L. (2015). Dynamics of Apis mellifera filamentous virus (AmFV) infections in honey bees and relationships with other parasites. Viruses, 7, 2654–2667. https://doi.org/10.3390/v7052654

Ji, T., Yin, L., Liu, Z., Shen, F., Shen, J. (2014). High-throughput sequencing identification of genes involved with Varroa destructor resistance in the eastern honeybee, Apis cerana. Genetics and Molecular Research, 13, 9086–9096. https://doi.org/10.4238/2014.October.31.24

Katoh, K., Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010

Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B, 274, 303–313. https://doi.org/10.1098/rspb.2006.3721

Kraberger, S., Cook, C. N., Schmidlin, K., Fontenele, R. S., Bautista, J., Smith, B., Varsani, A. (2019). Diverse single-stranded DNA viruses associated with honey bees (Apis mellifera). Infection, Genetics and Evolution, 71, 179–188. https://doi.org/10.1016/j.meegid.2019.03.024

Letunic, I., Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research, 47(W1), W256–W259. https://doi.org/10.1093/nar/gkz239

Levitt, A. L., Singh, R., Cox-Foster, D. L., Rajotte, E., Hoover, K., Ostiguy, N., Holmes, E. C. (2013). Cross-species transmission of honey bee viruses in associated arthropods. Virus Research, 176, 232–240. https://doi.org/10.1016/j.virusres.2013.06.013

Liu, H., Fu, Y., Xie, J., Cheng, J., Ghabrial, S. A., Li, G., ... Peng, Y., (2011). Widespread endogenization of densoviruses and parvoviruses in animal and human genomes. Journal of Virology, 85, 9863–9876. https://doi.org/10.1128/JVI.00828-11

Martin, S. J., Highfield, A. C., Brettell, L., Villalobos, E. M., Budge, G. E., Powell, M., ... Nikaido, S. (2012). Global honey bee viral landscape altered by a parasitic mite. Science, 336, 1304–1306. https://doi.org/10.1126/science.1220941

McMenamin, A. J., Flenniken, M. L. (2018). Recently identified bee viruses and their impact on bee pollinators. Current Opinion in Insect Science, 26, 120–129. https://doi.org/10.1016/j.cois.2018.02.009

McMenamin, A. J., Brutscher, L. M., Glenny, W., Flenniken, M. L. (2016). Abiotic and biotic factors affecting the replication and pathogenicity of bee viruses. Current Opinion in Insect Science, 16, 14–21. https://doi.org/10.1016/j.cois.2016.04.009

McMenamin, A. J., Genersch, E. (2015). Honey bee colony losses and associated viruses. Current Opinion in Insect Science, 8, 121–129. https://doi.org/10.1016/j.cois.2015.01.015

Mietzsch, M., Penzes, J. J., Agbandje-McKenna, M. (2019). Twenty-five years of structural parvovirology. Viruses, 11, 362. https://doi.org/10.3390/v11040362

Penzes, J. J., Söderlund-Venermo, M., Canuti, M., Eis-Hübinger, A. M., Hughes, J., Cotmore, S. F., Harrach, B. (2020). Reorganizing the family Parvoviridae: a revised taxonomy independent of the canonical approach based on host association. Archives of Virology, 165, 2133–2146. https://doi.org/10.1007/s00705-020-04632-4

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007

Remnant, E. J., Shi, M., Buchmann, G., Blacquiere, T., Holmes, E. C., Beekman, M., Ashe, A. (2017). A diverse range of novel RNA viruses in geographically distinct honey bee populations. Journal of Virology, 91, e00158–17. https://doi.org/10.1128/JVI.00158-17

Schoonvaere, K., Smagghe, G., Francis, F., de Graaf, D. C. (2018). Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites. Frontiers in Microbiology, 9, 177. https://doi.org/10.3389/fmicb.2018.00177

Shi, M., Lin, X. D., Tian, J. H., Chen, L. J., Chen, X., Li, C. X., ... Qin, X. C. (2016). Redefining the invertebrate RNA virosphere. Nature, 540, 539–543. https://doi.org/10.1038/nature20167

Steffan-Dewenter, I., Potts, S. G., Packer, L. (2005). Pollinator diversity and crop pollination services are at risk. Trends in Ecology and Evolution, 20, 651–652. https://doi.org/10.1016/j.tree.2005.09.004

Szelei, J., Woodring, J., Goettel, M. S., Duke, G., Jousset, F. X., Liu, K. Y., ... Zadori, Z. (2011). Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. Journal of Invertebrate Pathology, 106, 394–399. https://doi.org/10.1016/j.jip.2010.12.009

Tijssen, P., Penzes, J. J., Yu, Q., Pham, H. T., Bergoin, M. (2016). Diversity of small, single-stranded DNA viruses of invertebrates and their chaotic evolutionary past. Journal of Invertebrate Patholology, 140, 83–96. https://doi.org/10.1016/j.jip.2016.09.005

Tokarz, R., Firth, C., Street, C., Cox-Foster, D. L., Lipkin, W. I. (2011). Lack of Evidence for an Association between Iridovirus and Colony Collapse Disorder. PLoS ONE, 6, e21844. https://doi.org/10.1371/journal.pone.0021844

Trifinopoulos, J., Nguyen, L. T., Von Haeseler, A., Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), W232–W235. https://doi.org/10.1093/nar/gkw256

Valles, S. M., Shoemaker, D. W., Wurm, Y., Strong, C. A., Varone, L., Becnel, J. J., Shirk, P. D. (2013). Discovery and molecular characterization of an ambisense densovirus from South American populations of Solenopsis invicta. Biological Control, 67, 431–439. https://doi.org/10.1016/j.biocontrol.2013.09.015

Xu, P., Liu, Y., Graham, R. I., Wilson, K., Wu, K. (2014). Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLOS Pathogens, 10, e1004490. https://doi.org/10.1371/journal.ppat.1004490

Zadori, Z., Szelei, J., Lacoste, M. C., Li, Y., Gariepy, S., Raymond, P., ... Allaire, M. (2001). A viral phospholipase A2 is required for parvovirus infectivity. Developmental Cell, 1, 291–302. https://doi.org/10.1016/S1534-5807(01)00031-4

Downloads

Published

23. 12. 2020

Issue

Section

Animal Science section

How to Cite

OTT RUTAR, S., & KORDIŠ, D. (2020). Discovery and molecular characterisation of the first ambidensovirus in honey bees. Acta Agriculturae Slovenica, 116(2), 383–393. https://doi.org/10.14720/aas.2020.116.2.1832