Evaluation of soil physical properties of peat substrate

Authors

  • Tilen ZAMLJEN University of Ljubljana,Biotechnical Faculty, Agronomy Department, Ljubljana, Slovenia
  • Ana SLATNAR University of Ljubljana,Biotechnical Faculty, Agronomy Department, Ljubljana, Slovenia
  • Vesna ZUPANC University of Ljubljana,Biotechnical Faculty, Agronomy Department, Ljubljana, Slovenia

DOI:

https://doi.org/10.14720/aas.2020.116.2.1851

Keywords:

peat, physical properties of substrates, water repellency, substrate, tension, water content

Abstract

Peat substrate is the main substrate for plant production, mainly for the cultivation of vegetable seedlings and ornamental plants. Peat has good water retention properties, low mass, low pH and is free from diseases and pests. The water retention properties are particularly important for optimizing irrigation and thus water consumption in plant production. We investigated the water retention properties of unused and used peat substrate and various mixtures with additives, as well as the occurrence of water repellency, as this influences water absorption into the substrate. Unused peat substrate and different mixtures retained between 3.4 % and 18.4 % more water than the used substrate. The daily water losses are lower for the used substrates that initially contain lower water content at full saturation. At tensions between 10 and 33 kPa, the unused peat substrate contained between 25 % and 32 % water. The wilting point (WP) for unused peat substrate (tension between 300 and 1500 kPa) was between 15 and 18 %. Peat substrate has a wide interval of field capacity and the transition from the field capacity to wilting point is fast (change in water content between 7 % and 10 %). After drying, the water repellency of both unused and used peat substrates increased.

References

Al-Mahdouri, A., Baneshi, M., Gonome, H., Okajima, J., Maruyama, S. (2013). Evaluation of optical properties and thermal performances of different greenhouse covering materials. Solar Energy, 96, 21–32. https://doi.org/10.1016/j.solener.2013.06.029

Beyl, A. C., Trigiano, N. R. (2015). Plant Propagation Concepts and Laboratory Exercises. Taylor & Francis Group, LLC. 480 str. https://doi.org/10.1201/b17340

Bezerra-Coelho, R. C., Zhuang, L., Barbosa, C. M., Soto, A. M., Genuchten, M. T. (2018). Further tests of the HYPROP evaporation method for estimating the unsaturated soil hydraulic properties. Journal of Hydrology and Hydromechanics, 66(2), 9 str. https://doi.org/10.1515/johh-2017-0046

Brooks, R. H., Corey, A. T. (1964). Hydraulic properties of porous media. Fort Collins, Colorado ST. Univ.: 24 str.

Dekker, W. L., Doerr, H. S., Oostindie, K., Ziogas, K. A., Ritsema, J. C. (2001). Water Repellency and Critical Soil Water Content in a Dune Sand. Soil Science Society of America Journal, 65, 1667‒1674. https://doi.org/10.2136/sssaj2001.1667

Diara, C., Incrocci, L., Pardossi, A., Minuto, A. (2012). Reusing greenhouse growing media. Acta horticulturae, 927, 793‒800. https://doi.org/10.17660/ActaHortic.2012.927.98

Faul, F., Gabriel, M., Roßkopf, N., Zeitz, J., Huyssteen, W. C., Pretorius, L. M., Grundling, P. (2016). Physical and hydrological properties of peatland substrates from different hydrogenetic wetland types on the Maputaland Coastal Plain, South Africa. South African Journal of Plant and Soil, 33(4), 265-278. https://doi.org/10.1080/02571862.2016.1141334

Giancarlo, F. (2015). Growing Substrates Alternative to Peat for Ornamental Plants. InTech Publication: 47–67.

Greiffenhagen, A., Wessolek, G., Facklam, M., Renger, M., Stoffregen, H. (2006). Hydraulic functions and water repellency of forest floor horizons on sandy soils. Geoderma, 132, 182-195. https://doi.org/10.1016/j.geoderma.2005.05.006

Grover, S. P. P., J. A. Baldock (2013). The link between peat hydrology and decomposition: Beyond von Post. Journal of Hydrology, 479, 130-138. https://doi.org/10.1016/j.jhydrol.2012.11.049

Handrek, K., Black, N. (2002). Growing media for ornamental plants and turf. Sidney: University of New South Wales Press: 542 str.

Humko. (2020). Neuhaus humin substrat N3 70lit. Pridobljeno s https://www.humko-shop.si/index.php?route=product/product&product_id = 10496 (17. mar. 2020)

International Organization for Standardization. (2019). Soil quality‒Determination of the water-retention characteristic‒Laboratory methods (ISO Standard No. 11274) Pridobljeno s https://www.iso.org/standard/68256.html (16. mar. 2020)

Ismail, M. S., Ozawa, K., Khondaker, A. N. (2007). Effect of irrigation frequency and timing on tomato yield, soil water dynamics and water use efficiency under drip irrigation. Eleventh International Water Technology Conference, 69‒84.

Kim, G. H., Jeong B. R. (2003). Hydroponic culture of a pot plant Ficus benjamina ‘King’ using mixtures of used rockwool slab particles and chestnut woodchips. Journal of Korean Society of Horticultural Science, 44, 251–254.

Kipp, J. A., Wever, G., de Kreij, C. (2000). International Substrate Manual. The Netherlands: Elsevier. 94 str.

Leelamanie, D. A. L., Karube, J., Yoshida, A. (2008). Characterizing water repellency indices: Contact angle and water drop penetration time of hydrophobized sand. Soil Science & Plant Nutrition, 54(2), 179‒187. https://doi.org/10.1111/j.1747-0765.2007.00232.x

Letey, J. (1969). Measurement of contact angle, water drop penetration time and critical surface tension. In: DeBano, L. F., Letey, J. (Eds.), Water Repellent Soils. Proceedings Symposium on Water Repellent Soils. University of California, Riverside: 43‒47.

Montesano, F. F., Serio, F., Mininni, C., Signore, A., Parente, A., Santamaria, P. (2015). Tensiometer Based Irrigation Management of Subirrigated Soilless Tomato: Effects of Substrate Matric Potential Controlon Crop Performance. Frontiers in Plant Science, 6, 1‒11. https://doi.org/10.3389/fpls.2015.01150

Oostindie, K., Dekker, W. L., Wesseling, G. J., Ritsema, J. C., Geissen, V. (2013). Development of actual water repellency in a grass-covered dune sand during a dehydration experiment. Geoderma, 204-205, 23‒30. https://doi.org/10.1016/j.geoderma.2013.04.006

Perdana, L. R., Ratnasari, N. G., Ramadhan, M. L., Palamba, P., Nasruddin, N., Nugroho, Y. S. (2018). Hydrophilic and hydrophobic characteristics of dry peat. IOP Conference Series Earth and Environmental Science, 105(1), 7 str. https://doi.org/10.1088/1755-1315/105/1/012083

Pintar, M. (2006). Osnove namakanja s poudarkom na vrtninah in sadnih vrstah v zahodni, osrednji in južni Sloveniji. Ljubljana, Ministrstvo za kmetijstvo, gozdarstvo in prehrano RS: 55 str.

Pintar, M., Zupanc, V. (2017). Deficitno namakanje v poljedelstvu in zelenjadarstvu - izzivi in perspektive. V: Novi izzivi v agronomiji 2017: zbornik simpozija, Laško, 26.-27. jan. 2017. Ljubljana, Slovensko agronomsko društvo, 272‒276.

Rasa, K., Horn, R., Räty, M., Yli-Halla, M., Pietola, L. (2007). Water repellency of clay, sand and organic soils in Finland. Agricultural and Food Science, 16, 267‒277. https://doi.org/10.2137/145960607783328218

Raviv, M., Lieth, J. H. (1979). Yield response to water. FAO irrigation and drainage paper 33. Rome: FAO: 193 str.

Raviv, M., Blom, J. T. (2001). The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Scientia Horticulturae, 88(4), 257–276. https://doi.org/10.1016/S0304-4238(00)00239-9

Raviv, M., Lieth, J. H. (2008). Soilless Culture: Theory and Practice. Elsevier. 587 str.

Richards, L. A. (1941). A pressure-membrane extraction apparatus for soil solution. Soil Science, 51(5), 377‒386. https://doi.org/10.1097/00010694-194105000-00005

Ritsema, J. C., Dekker, W. L. (1994). How water moves in a water repellent sandy soil 2. Dynamics of fingered flow. Water Resources Research, 30(9), 2519‒2531. https://doi.org/10.1029/94WR00750

Saldanha Vogelmann, E., Miguel Reichert, J., Prevedello, J., Oladele Awe, G., José Reinert, D. (2015). Soil hydrophobicity: comparative study of usual determination methods. Ciência Rural, 45(2), 260‒266. https://doi.org/10.1590/0103-8478cr20140042

Schindler, U., Durner, W., von Unold, G., Mueller, L., Wieland, R. (2010). The evaporation method: extending the measurement range of soil hydraulic properties using the airentry pressure of the ceramic cup. Journal of Plant Nutrition and Soil Science, 173, 563–572. https://doi.org/10.1002/jpln.200900201

Schindler, U., Doerner, J., Mueller, L. (2015). Simplified method for quantifying the hydraulic properties of shrinking soils. Journal of Plant Nutrition and Soil Science, 178, 10 str. https://doi.org/10.1002/jpln.201300556

Schindler, U., Müller, L., Eulenstein, F. (2015). Measurement and evaluation of the hydraulic properties of horticultural substrates. Archives of Agronomy and Soil Science, 62(6), 806‒818. https://doi.org/10.1080/03650340.2015.1083982

Schwärzel, K., Renger, M., Sauerbrey, R., Wessolek, G. (2002). Soil physical characteristics of peat soils. Journal of Plant Nutrition and Soil Science, 165, 479‒486. https://doi.org/10.1002/1522-2624(200208)165:4<479::AID-JPLN479>3.0.CO;2-8

Smith, D. L. (1987). Rockwool in Horticulture. London, UK: Grower Books.

Smith, D. L. (1998). Growing in Rockwool. London, UK: Grower Books.

Team, R.D.C. (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Urrestarazu, M., Guillén, C., Mazuela, C. P., Carrasco, G. (2008). Wetting agent effect on physical properties of new and reused rockwool and coconut coir waste. Scientia Horticulturae, 116(1), 105‒108. https://doi.org/10.1016/j.scienta.2007.10.030

Vaz, P. M. C., Calbo, G. A., Porto, F. L., Porto, H. L. (2013). Principles and Applications of a New Class of Soil Water Matric Potential Sensors: The Dihedral Tensiometer. Procedia Environmental Sciences, 19, 484‒493. https://doi.org/10.1016/j.proenv.2013.06.055

Wu, Y., Zhang, N., Slater, G., Waddington, M. J., de Lannoy, C. L. (2020). Hydrophobicity of peat soils: Characterization of organic compound changes associated with heat-induced water repellency. Science of the Total Environment, 714, 15 str. https://doi.org/10.1016/j.scitotenv.2019.136444

Zamljen, T., Zupanc, V., Slatnar, A. (2020). Influence of irrigation on yield and primary and secondary metabolites in two chilies species, Capsicum annuum L. and Capsicum chinense Jacq. Agricultural Water Management, 234, 7 str. https://doi.org/10.1016/j.a

Published

23. 12. 2020

Issue

Section

Agronomy section

How to Cite

ZAMLJEN, T., SLATNAR, A., & ZUPANC, V. (2020). Evaluation of soil physical properties of peat substrate. Acta Agriculturae Slovenica, 116(2), 357–367. https://doi.org/10.14720/aas.2020.116.2.1851

Most read articles by the same author(s)

1 2 > >>