The magic world of whiskey microbiota

Authors

  • Ajda PRISTAVEC Université catholique de Louvain, Place de l'Université 1, 1348 Ottignies-Louvain-la-Neuve, Belgium
  • Simon KOREN Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia
  • Barbara JERŠEK Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
  • Anja VERONOVSKI Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia
  • Leon KOROŠEC Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia
  • Miha KOVAČ Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia
  • Minka KOVAČ Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia
  • Nataša TOPLAK Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia

DOI:

https://doi.org/10.14720/aas.2020.116.2.1692

Keywords:

whiskey, metagenomics, bacteria

Abstract

Modern metagenomics techniques in combination with next generation sequencing are increasingly used for research of numerous environments inhabited by diverse microbiota. In the present study we focused on a rather unusual environment for their growth, a forgotten bottle of blended Scotch whiskey. Whiskey is a world-known popular spirit, traditionally produced in a series of steps comprising malting of barley, fermenting the malt to an alcoholic wort, distilling and at least 3-year long maturation in oak casks, followed by filtration. In the process, notably in the fermentation, microorganisms play a crucial role. However, we were primarily interested in potential microbiological and chemical changes that might have taken place over the years while the half-empty whiskey bottle was left open. We found that only a very low number of aerobic mesophilic bacteria survived in it while the ethanol content decreased from 40 % to approximately 30 %. Interestingly, the metagenomics analysis showed there was a large and diverse microbial community present in the forgotten whiskey. Among the most abundant microorganisms were members of human commensal microbiota, some potentially disease-causing and also food spoiling bacteria, in particular genus Pseudomonas. Surprisingly, we even found a non-negligible number of typically environmental bacterial species.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

Coates, R., Moran, J., & Horsburgh, M. J. (2014). Staphylococci: colonizers and pathogens of human skin. Future microbiology, 9(1), 75–91. https://doi.org/10.2217/fmb.13.145 DOI: https://doi.org/10.2217/fmb.13.145

Brenner J., Krieg N. R., Staley J. T. (2005). The Gammaproteobacteria. Bergey's Manual of Systematic Bacteriology. 2B (2nd ed.). New York: Springer. DOI: https://doi.org/10.1007/0-387-28021-9

Elsaghir, H., & Reddivari, A. (2020). Bacteroides Fragilis. In StatPearls. Treasure Island (FL): StatPearls Publishing.

Karlsson, B., & Friedman, R. (2017). Dilution of whisky - the molecular perspective. Scientific reports, 7(1), 6489. https://doi.org/10.1038/s41598-017-06423-5 DOI: https://doi.org/10.1038/s41598-017-06423-5

Khan, S. T., & Hiraishi, A. (2002). Diaphorobacter nitroreducens gen nov, sp nov, a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. The Journal of general and applied microbiology, 48(6), 299–308. https://doi.org/10.2323/jgam.48.299 DOI: https://doi.org/10.2323/jgam.48.299

Liu, H., Zhu, J., Hu, Q., & Rao, X. (2016). Morganella morganii, a non-negligent opportunistic pathogen. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 50, 10–17. https://doi.org/10.1016/j.ijid.2016.07.006 DOI: https://doi.org/10.1016/j.ijid.2016.07.006

Makanjuola, D. B., Tymon, A., & Springham, D. G. (1992). Some effects of lactic acid bacteria on laboratory-scale yeast fermentations. Enzyme and Microbial Technology, 14(5), 350–357. https://doi.org/10.1016/0141-0229(92)90002-6 DOI: https://doi.org/10.1016/0141-0229(92)90002-6

Mehrani, M. J., Sobotka, D., Kowal, P., Ciesielski, S., & Makinia, J. (2020). The occurrence and role of Nitrospira in nitrogen removal systems. Bioresource technology, 303, 122936. https://doi.org/10.1016/j.biortech.2020.122936 DOI: https://doi.org/10.1016/j.biortech.2020.122936

Nagashima, S., Kamimura, A., Shimizu, T., Nakamura-Isaki, S., Aono, E., Sakamoto, K., … Nagashima, K. V. (2012). Complete genome sequence of phototrophic betaproteobacterium Rubrivivax gelatinosus IL144. Journal of bacteriology, 194(13), 3541–3542. https://doi.org/10.1128/JB.00511-12 DOI: https://doi.org/10.1128/JB.00511-12

Noussair, L., Salomon, E., El Sayed, F., Duran, C., Bouchand, F., Roux, A. L., …Dinh, A. (2019). Monomicrobial bone and joint infection due to Corynebacterium striatum: literature review and amoxicillin-rifampin combination as treatment perspective. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 38(7), 1269–1278. https://doi.org/10.1007/s10096-019-03542-x DOI: https://doi.org/10.1007/s10096-019-03542-x

O'Donovan, D., Corcoran, G. D., Lucey, B., & Sleator, R. D. (2014). Campylobacter ureolyticus: a portrait of the pathogen. Virulence, 5(4), 498–506. https://doi.org/10.4161/viru.28776 DOI: https://doi.org/10.4161/viru.28776

Paradh, A. D. (2015). Gram-negative spoilage bacteria in brewing. Brewing Microbiology, 175–194. https://doi.org/10.1016/B978-1-78242-331-7.00008-3 DOI: https://doi.org/10.1016/B978-1-78242-331-7.00008-3

Quintieri, L., Fanelli, F., & Caputo, L. (2019). Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods (Basel, Switzerland), 8(9), 372. https://doi.org/10.3390/foods8090372 DOI: https://doi.org/10.3390/foods8090372

Remenant, B., Jaffrès, E., Dousset, X., Pilet, M. F., & Zagorec, M. (2015). Bacterial spoilers of food: behavior, fitness and functional properties. Food microbiology, 45(Pt A), 45–53. https://doi.org/10.1016/j.fm.2014.03.009 DOI: https://doi.org/10.1016/j.fm.2014.03.009

Simpson, K. L., Pettersson, B., & Priest, F. G. (2001). Characterization of lactobacilli from Scotch malt whisky distilleries and description of Lactobacillus ferintoshensis sp. nov., a new species isolated from malt whisky fermentations. Microbiology (Reading, England), 147(Pt 4), 1007–1016. https://doi.org/10.1099/00221287-147-4-1007 DOI: https://doi.org/10.1099/00221287-147-4-1007

Tessler, M., Neumann, J. S., Afshinnekoo, E., Pineda, M., Hersch, R., Velho, L., … Brugler, M. R. (2017). Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing. Scientific reports, 7(1), 6589. https://doi.org/10.1038/s41598-017-06665-3 DOI: https://doi.org/10.1038/s41598-017-06665-3

van Beek, S., & Priest, F. G. (2002). Evolution of the lactic acid bacterial community during malt whisky fermentation: a polyphasic study. Applied and environmental microbiology, 68(1), 297–305. https://doi.org/10.1128/aem.68.1.297-305.2002 DOI: https://doi.org/10.1128/AEM.68.1.297-305.2002

van Beek, S., & Priest, F. G. (2003). Bacterial Diversity in Scotch Whisky Fermentations as Revealed by Denaturing Gradient Gel Electrophoresis. Journal of the American Society of Brewing Chemists, 61(1), 10–14. DOI: https://doi.org/10.1094/ASBCJ-61-0010

Yu, Z., Luo, Q., Xiao, L., Sun, Y., Li, R., Sun, Z., & Li, X. (2019). Beer-spoilage characteristics of Staphylococcus xylosus newly isolated from craft beer and its potential to influence beer quality. Food science & nutrition, 7(12), 3950–3957. https://doi.org/10.1002/fsn3.1256 DOI: https://doi.org/10.1002/fsn3.1256

Downloads

Published

23. 12. 2020

Issue

Section

Agronomy section

How to Cite

PRISTAVEC, A., KOREN, S., JERŠEK, B., VERONOVSKI, A., KOROŠEC, L., KOVAČ, M., KOVAČ, M., & TOPLAK, N. (2020). The magic world of whiskey microbiota. Acta Agriculturae Slovenica, 116(2), 237–243. https://doi.org/10.14720/aas.2020.116.2.1692

Most read articles by the same author(s)