The magic world of whiskey microbiota

Authors

  • Ajda PRISTAVEC Université catholique de Louvain, Place de l'Université 1, 1348 Ottignies-Louvain-la-Neuve, Belgium
  • Simon KOREN Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia
  • Barbara JERŠEK Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
  • Anja VERONOVSKI Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia
  • Leon KOROŠEC Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia
  • Miha KOVAČ Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia
  • Minka KOVAČ Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia
  • Nataša TOPLAK Omega d.o.o., Dolinškova 8, Ljubljana, SI-1000, Slovenia

DOI:

https://doi.org/10.14720/aas.2020.116.2.1692

Keywords:

whiskey, metagenomics, bacteria

Abstract

Modern metagenomics techniques in combination with next generation sequencing are increasingly used for research of numerous environments inhabited by diverse microbiota. In the present study we focused on a rather unusual environment for their growth, a forgotten bottle of blended Scotch whiskey. Whiskey is a world-known popular spirit, traditionally produced in a series of steps comprising malting of barley, fermenting the malt to an alcoholic wort, distilling and at least 3-year long maturation in oak casks, followed by filtration. In the process, notably in the fermentation, microorganisms play a crucial role. However, we were primarily interested in potential microbiological and chemical changes that might have taken place over the years while the half-empty whiskey bottle was left open. We found that only a very low number of aerobic mesophilic bacteria survived in it while the ethanol content decreased from 40 % to approximately 30 %. Interestingly, the metagenomics analysis showed there was a large and diverse microbial community present in the forgotten whiskey. Among the most abundant microorganisms were members of human commensal microbiota, some potentially disease-causing and also food spoiling bacteria, in particular genus Pseudomonas. Surprisingly, we even found a non-negligible number of typically environmental bacterial species.

References

Coates, R., Moran, J., & Horsburgh, M. J. (2014). Staphylococci: colonizers and pathogens of human skin. Future microbiology, 9(1), 75–91. https://doi.org/10.2217/fmb.13.145

Brenner J., Krieg N. R., Staley J. T. (2005). The Gammaproteobacteria. Bergey's Manual of Systematic Bacteriology. 2B (2nd ed.). New York: Springer.

Elsaghir, H., & Reddivari, A. (2020). Bacteroides Fragilis. In StatPearls. Treasure Island (FL): StatPearls Publishing.

Karlsson, B., & Friedman, R. (2017). Dilution of whisky - the molecular perspective. Scientific reports, 7(1), 6489. https://doi.org/10.1038/s41598-017-06423-5

Khan, S. T., & Hiraishi, A. (2002). Diaphorobacter nitroreducens gen nov, sp nov, a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. The Journal of general and applied microbiology, 48(6), 299–308. https://doi.org/10.2323/jgam.48.299

Liu, H., Zhu, J., Hu, Q., & Rao, X. (2016). Morganella morganii, a non-negligent opportunistic pathogen. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 50, 10–17. https://doi.org/10.1016/j.ijid.2016.07.006

Makanjuola, D. B., Tymon, A., & Springham, D. G. (1992). Some effects of lactic acid bacteria on laboratory-scale yeast fermentations. Enzyme and Microbial Technology, 14(5), 350–357. https://doi.org/10.1016/0141-0229(92)90002-6

Mehrani, M. J., Sobotka, D., Kowal, P., Ciesielski, S., & Makinia, J. (2020). The occurrence and role of Nitrospira in nitrogen removal systems. Bioresource technology, 303, 122936. https://doi.org/10.1016/j.biortech.2020.122936

Nagashima, S., Kamimura, A., Shimizu, T., Nakamura-Isaki, S., Aono, E., Sakamoto, K., … Nagashima, K. V. (2012). Complete genome sequence of phototrophic betaproteobacterium Rubrivivax gelatinosus IL144. Journal of bacteriology, 194(13), 3541–3542. https://doi.org/10.1128/JB.00511-12

Noussair, L., Salomon, E., El Sayed, F., Duran, C., Bouchand, F., Roux, A. L., …Dinh, A. (2019). Monomicrobial bone and joint infection due to Corynebacterium striatum: literature review and amoxicillin-rifampin combination as treatment perspective. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 38(7), 1269–1278. https://doi.org/10.1007/s10096-019-03542-x

O'Donovan, D., Corcoran, G. D., Lucey, B., & Sleator, R. D. (2014). Campylobacter ureolyticus: a portrait of the pathogen. Virulence, 5(4), 498–506. https://doi.org/10.4161/viru.28776

Paradh, A. D. (2015). Gram-negative spoilage bacteria in brewing. Brewing Microbiology, 175–194. https://doi.org/10.1016/B978-1-78242-331-7.00008-3

Quintieri, L., Fanelli, F., & Caputo, L. (2019). Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods (Basel, Switzerland), 8(9), 372. https://doi.org/10.3390/foods8090372

Remenant, B., Jaffrès, E., Dousset, X., Pilet, M. F., & Zagorec, M. (2015). Bacterial spoilers of food: behavior, fitness and functional properties. Food microbiology, 45(Pt A), 45–53. https://doi.org/10.1016/j.fm.2014.03.009

Simpson, K. L., Pettersson, B., & Priest, F. G. (2001). Characterization of lactobacilli from Scotch malt whisky distilleries and description of Lactobacillus ferintoshensis sp. nov., a new species isolated from malt whisky fermentations. Microbiology (Reading, England), 147(Pt 4), 1007–1016. https://doi.org/10.1099/00221287-147-4-1007

Tessler, M., Neumann, J. S., Afshinnekoo, E., Pineda, M., Hersch, R., Velho, L., … Brugler, M. R. (2017). Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing. Scientific reports, 7(1), 6589. https://doi.org/10.1038/s41598-017-06665-3

van Beek, S., & Priest, F. G. (2002). Evolution of the lactic acid bacterial community during malt whisky fermentation: a polyphasic study. Applied and environmental microbiology, 68(1), 297–305. https://doi.org/10.1128/aem.68.1.297-305.2002

van Beek, S., & Priest, F. G. (2003). Bacterial Diversity in Scotch Whisky Fermentations as Revealed by Denaturing Gradient Gel Electrophoresis. Journal of the American Society of Brewing Chemists, 61(1), 10–14.

Yu, Z., Luo, Q., Xiao, L., Sun, Y., Li, R., Sun, Z., & Li, X. (2019). Beer-spoilage characteristics of Staphylococcus xylosus newly isolated from craft beer and its potential to influence beer quality. Food science & nutrition, 7(12), 3950–3957. https://doi.org/10.1002/fsn3.1256

Downloads

Published

23. 12. 2020

Issue

Section

Agronomy section

How to Cite

PRISTAVEC, A., KOREN, S., JERŠEK, B., VERONOVSKI, A., KOROŠEC, L., KOVAČ, M., KOVAČ, M., & TOPLAK, N. (2020). The magic world of whiskey microbiota. Acta Agriculturae Slovenica, 116(2), 237–243. https://doi.org/10.14720/aas.2020.116.2.1692

Most read articles by the same author(s)