Analysis of gliadin patterns and diversity in Triticum polonicum L. accessions from Ethiopia

Authors

  • Eleni SHIFERAW Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia

DOI:

https://doi.org/10.14720/aas.2021.117.1.1935

Keywords:

A-PAGE, genetic diversity, gliadin, Triticum polonicum

Abstract

Gliadins from 25 accessions represented by 350 individual seed samples were analysed by acid-polyacrylamide gel electrophoresis (A-PAGE) with the objective of identifying gliadin band patterns and examine the extent of diversity in Triticum polonicum L. collections from Ethiopia. Seventy polymorphic bands and 68 different patterns were identified. Eighteen different mobility bands and 16 patterns were identified in ω-gliadin region, 22 bands and 20 patterns in γ-gliadin region, 12 bands and 22 patterns in β-gliadin region and 18 bands and 10 patterns in α-gliadin region. The average genetic diversity calculated from the data of the four gliadin zones of the analysed samples was 0.15. The γ region have the highest diversity (H = 0.193), followed by ω regions (H = 0.177) and β region (H = 0.168) and the lowest diversity was observed in α region (H = 0.127). Cluster analysis based on genetic distances resulted in grouping of the analysed accessions in to seven main groups. Though the level of diversity was relatively lower than other tetraploid wheat species from Ethiopia, the findings are indicative of the existence of variation in the collections which can be exploited for wheat improvement.

Author Biography

  • Eleni SHIFERAW, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia

    Crop Biodiversity Directorate

    Resercher

References

Aliyeva, A., Ojaghi, J., Mehdiyeva, S. (2012). Electrophoretic profiles of gliadin subunits to evaluate genetic diversity of Azerbaijan Synthetic Branched spike wheat accessions. American-Eurasian Journal of Agriculture & Environmental Science, 12(10), 1343-1339. https://doi:10.5829/idosi.aejaes.2012.12.10.6680.

Akond, M., Furuta, Y., Watanabe, N. (2006). Experimental introgression of the gene for long glumes through hybridization of Triticum aestivum / Triticum polonicum. Journal of genetics and breeding, 60, 141-146.

Brasesco, F., Asgedom, D., Sommacal, V., Casari, G. (2019). Strategic analysis and intervention plan for wheat and wheat products in the Agro-Commodities Procurement Zone of the pilot Integrated Agro-Industrial Park in Central-Eastern Oromia, Ethiopia. FAO, Addis Ababa.

Bieńkowska, T., Suchowilska, E., Wiwart, M. (2019a). Triticum polonicum L. as promising source material for breeding new wheat cultivars. Journal of Elementology, 25(1), 237-248. http://doi:10.5601/jelem.2019.24.2.1873.

Bieńkowska, T., Suchowilska, E., Kandler, W., Krska, R., Wiwart, M. (2019b). Triticum polonicum L. as potential source material for the biofortification of wheat with essential micronutrients. Plant Genetic Resources, 17(3), 213-220. http://doi:10.1017/S1479262118000394.

Bushuk, W., & Zillman, R.R. (1978). Wheat cultivar identification by gliadin electrophoregrams I Apparatus, method, and nomenclature. Canadian Journal of Plant Sciences, 58, 505–515. https://doi.org/10.4141/cjps78-076

Demissie, A., & Habtemariam, G. (1991). Wheat Genetic Resources in Ethiopia. In H Gebre-Mariam, DG Tanner, and M Hulluka. (Eds.), Wheat Research in Ethiopia: A historical perspective. IAR/CIMMYT, Addis Ababa, pp 33-46.

Engels JMM, & Hawkes JG. (1991). The Ethiopian gene centre and its genetic diversity. In J.M.M. Engeles, J.G. Hawkes, M. Worede (Eds.), Plant Genetic Resources of Ethiopia. pp 23-41. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511551543.003

Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chunduri, V., Arora, P. (2018). Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the World. Frontiers in Nutrition, 5, 12. http://doi:10.3389/fnut.2018.00012.

Hailegiorgis, D., Lee, C.A., Yun, S.J. (2017). Allelic variation at the gliadin coding loci of improved Ethiopian Tetraploid wheat varieties. Journal of Crop Science & Biotechnology, 20(4), 287-293. http://doi: 10.1007/s12892-017-0106-0.

Hailu, F., Johansson, E., Merker, A., Belay, G., Singh, H., Zeleke, H. (2006). Composition of and variation in high- and low-molecular weight glutenin subunits, and omega gliadins in Ethiopian tetraploid wheat germplasm. Plant Genetic Resources, 4(2), 134–143. https://doi.org/10.1079/PGR2006110.

Hakimi, A., Monneveux, P., Nachit, M.M. (1997). Direct and indirect selection for drought tolerance in alien tetraploid wheat durum wheat crosses. In H.J. Braun, F. Altay, W.E. Kronstad, S.P.S. Beniwal, A. McNab (Eds.), Wheat: Prospects for Global Improvement. Proceedings of the 5th International Wheat Conference (pp 353-360). Kluwer, London. https://doi.org/10.1007/978-94-011-4896-2_49

Lookhart, G.L., Finney, K.F. (1984). Polyacrylamide gel electrophoresis of wheat gliadins: the effect of environment and germination. Cereal Chemistry, 61, 496–499.

Miller, M.P. (1997). Tools for Populations Genetic Analyses (TFPGA) 1.3. A Windows program for the analysis of allozyme and molecular population genetic data.

Ojaghi, J. & Akhundova, E. (2010). Genetic diversity in double haploids wheat based on morphological traits, gliadin patterns and RAPD markers. African Journal of Agricultural Research, 5(3), 1701-1712. http://doi:10.5897/AJAR09.754.

Pan, D., Hong, L., Wei, L., Peng-Fei, Q., Yu-Ming, W., Zheng, Y.L. (2007). Genetic diversity of storage proteins in Triticum polonicum. Journal of plant science, 2(4), 416-424. http://doi:10.3923/jps.2007.416.424.

Payne, P.I. (1987). Genetics of wheat storage protein and the effect of allelic variation on bread baking quality. Annual Review of Plant physiology, 38, 141-153. https://doi.org/10.1146/annurev.pp.38.060187.001041

Peakall, R., Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537–2539. http://doi: 10.1093/bioinformatics/bts460.

Ram, S., Jain, N., Dawar, V., Singh, R.P., Shoran, J. (2005). Analysis of Acid-PAGE gliadin pattern of Indian wheats (Triticum aestivum L.) representing different environments and periods. Crop Science, 45, 1256-1263. https://doi.org/10.2135/cropsci2004.0334.

Rodrı´guez-Quijano, M., Lucas, R., Carrillo, J.M. (2003). Waxy proteins and amylose content in tetraploid wheats Triticum dicoccum Schulb., Triticum durum L. and Triticum polonicum L. Euphytica, 134, 97–101. http://doi:10.1023/A:1026157713582.

Sneath, P.H., & Sokal, R.R. (1973). Numerical taxonomy. W. H. Freeman, San Francisco.

Teklu, Y., Hammer, K., Huang, X., Roder, M.S. (2006). Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces. Genetic Resources and Crop Evolution, 53, 1115–1126. https://doi.org/10.1007/s10722-005-1146-7.

Tessema, T., & Belay, G. (1991). Aspects of Ethiopian tetraploid wheats with emphasis on durum wheat genetics and breeding research. In H. Gebre-Mariam, D.G. Tanner, and M. Hulluka (Eds.), Wheat Research in Ethiopia: A historical perspective. (pp 47-72). IAR/CIMMYT, Addis Ababa, Ethiopia.

Tsegaye, B., & Berg, T. (2007). Genetic erosion of Ethiopian tetraploid wheat landraces in Eastern Shewa, Central Ethiopia. Genetic Resources and Crop Evolution, 54, 715–726. https://doi.org/10.1007/s10722-006-0016-2.

USDA. (2020). Agricultural Research Service, National Plant Germplasm System. Germplasm Resources Information Network (GRIN-Taxonomy). National Germplasm Resources Laboratory, Beltsville, Maryland. Retrieved from https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx? 406898.

Vaziri, N. D., Liu, S., Lau, W.L., Khazaeli, M., Nazertehrani, S., Farzaneh, S.H., Kieffer, D.A., Adams, S.H., Martin, R.J. (2014). High Amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLOS One, 9, 912. http://10.1371/journal.pone.0114881.

Watanabe, N. (2004). Triticum polonicum IC12196: a possible alternative source of GA3-insensitive semi-dwarfism. Cereal Research Communication, 32, 429–434. https://doi.org/10.1007/BF03543331.

Wiwart, M., Suchowilska, E., Kandler, W., Sulyok, M., Groenwald, P., Krska, R. (2013). Can Polish wheat (Triticum polonicum L.) be an interesting gene source for breeding wheat cultivars with increased resistance to Fusarium head blight? Genetic Resources and Crop Evolution, 60, 2359–2373. https://doi.org/10.1007/s10722-013-0004-2.

Yifru, T., Hammer, K., Huang, X.Q., Roder, M.S. (2006). Regional patterns of microsatellite diversity in Ethiopian tetraploid wheat accessions. Plant Breeding, 125, 125—130. http://10.1111/j.1439-0523.2006.01147.x.

Zaefizadeh, M., Somarin, S.J., Ojaghi, J., Seyedi, S.M., Mahmoodabad, R.Z., Ochi, M. (2010). Genetic diversity for gliadin patterns of durum wheat landraces in the Northwest of Iran and Azerbaijan. Pesquisa Agropecuária Brasileira, 45, 1425–1432. https://doi.org/10.1590/S0100-204X2010001200013.

Downloads

Published

31. 03. 2021

Issue

Section

Original Scientific Article

How to Cite

SHIFERAW, E. (2021). Analysis of gliadin patterns and diversity in Triticum polonicum L. accessions from Ethiopia. Acta Agriculturae Slovenica, 117(1), 1–6. https://doi.org/10.14720/aas.2021.117.1.1935